
AD-A145 285 SOFTWARE ENGINEERING ENVIRONMENTS FOR MISSION CRITICAL 110.

APPLICATIONS -- ST. - U) INSTITUTE FOR DEFENSE ANALYSES

UNCLASSFE U DA/VO84-28866 MDA903-84-C 03 F/0 9/2 N

EhEmohhEmhEEEEI
EEE mohEEshmhEEE

U 111112.2
136

L.

IIII1 - ll t
11111_L25 - L ; .6

MKCROCCPY PESOLTQ TEST C-.ART

P.A' ZA. BAE A %... S - 963-

Copy of 115 copies

II

IDA PAPER P-1789

SOFTWARE ENGINEERING ENVIRONMENTS FOR
MISSION CRITICAL APPLICATIONS -- STARS

ALTERNATIVE PROGRAMMATIC APPROACHES

N
Richard A. DeMillo

Ann B. Marmor-Squires
Samuel T. Redwine, Jr.

William E. Riddle

August 1984

LUJ

Prepared for
Office of the Under. Secretary of Defense for Research and Engineering

DT CELECTEr \

1 ~~SEP5 L94.J ..

zc D
INSTITUTE FOR DEFENSE ANALYSES

II

_ w IDA Log No. HQ 84-28866

The work reported in this document was conducted under contract
MDA 903 84 C 0031 for the Department of Defense. The publication
of this IDA Paper does not indicate endorsement by the Department
of Defense, nor should the contents be construed as reflecting the
official position of that agency.

This paper has been reviewed by IDA to assure that It meets high
standards of thoroughness, objectivity, and sound analytical
methodology and that the conclusions stem from the methodology.
IDA doss not, however, necessarily endorse the conclusions or
recommendations that it may contain.

Approved for public release; distribution unlimited.

SECURITY CLASSIFICATION Of THIS PACE Mike Onto Entered)

REPORT DOCUMEtTATION PAGE READ INSTRUCTIONS

1. ~~/ t-OR 2UMCRVT ACCESSION NO . RECIPIENT'S CATALOG NUMBER

S. TYPE or REPORT a PERIOD COVERED

Software Engineering Environments for FINAL - Dec. 1983-
Mission Critical Applications -- STARS - u. 1984
Alternative Programmatic Approaches 4. PERFORMING ONG. REPORT NUMBER

7. AUTHOR(Q. 6. COTAC OR GRAN UUR.

Richard A. DeMillo, Ann B. Marmor-Squires MDA 903 84 C 0031
William E. Riddle, Samuel T. Redwine, Jr.

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10- PROGRAM ELEMIENT PROJECT, TASK

Institute for Defense Analyses AREA 6 WORK UNIT NUMBERS

1801 N. Beauregard Street
Alexandria, VA 22311 Task T-4-236
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATEI

STARS Joint Program Office August 1984
400 Army-Havy Drive, 9th Floor 13. NUMBER OF PAGES

Arlington, VA 22202 149
14. MONITORING AGENCY NAME & AOORESSjIf dliffern .1~f Cceiiolind Office) IS. SECURITY CLASS. (of thde !oeet)

DoD-IDA Management Office
1801 N. Beauregard Street UNCLASSIFIED
Alexandria, VA 22311 13. DECLASSIFICATI1N/OOWNGRAOING

I-SCHEDULE N

16. DISTRIBUTIGN STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (ofth sreet ogentered in Block 20. If different from Rope i)

16. SUPPLEMENTARY NOTES

IS. KEY WORDS (Connea.en reverse side It nec..ary arn! Identity by Weoek tmeer)

software engineering environments; military requirements; computer
programmuing; mission critical computer resources; laboratories;
industrial procurement; consortiums; software factories; alterna-
tives

Central to the STARS (Software Technology for Adaptable and
Reliable Systems) Program is automated software engineering environ-
ment(s) (SEE) to provide software development and in-service support
for DoD systems with mission critical computer resources (MCCR).
This paper briefly describes seven previously proposed alternatives
for producing SEEs in the near-, mid-, and long-terms and highlight
the advantages and disadvantages of each alternative. It reviews

(r'on 4F in ii r

00 I 1473 EDiTION oF I Nov" is1 GoSoLETt

91ECURITY CLAWSFICATtON Of THIS PAGE (Woo Dote Eneed)

SCUOiTY CLASIFICATION OF TiOS PAOI[4hm BDa A nIeO

20. Abstract (Continued)

some key issues for selecting alternatives or combinations
of alternatives including DoD's needs, the available techni-
cal opportunities and choices, the means used to obtain
environment(s), and the costs. This paper also makes recom-
mendations for STARS decision making, suggesting an explora-
tion and decision process as well as a number of possible
activities. In depth descriptions of the seven previously
proposed alternatives appear in an Appendix.

Accession For

Jut.1 f i-- 1I. .

By
Distribution/_

Availability Codes
Avail and/or

Dist j Special

SuCURVV CLASIICATION OF ?Ill PAGCfVhm Date See

I
I
I

IDA PAPER P-1789I

| SOFTWARE ENGINEERING ENVIRONMENTS FOR
MISSION CRITICAL APPLICATIONS -- STARS

I ALTERNATIVE PROGRAMMATIC APPROACHES

I

Richard A. DeMillo
Ann B. Marmor-Squires
Samuel T. Redwine, Jr.

William E. Riddle

August 1984

I

IDA

IINSTITUTE FOR DEFENSE ANALYSES
1801 N. Beauregard Street

I Alexandria, Virginia 22311

Contract MDA 903 84 C 0031
Task T-4-236

I

I

FOREWORD

This report addresses programmatic alternatives for a
portion of the DoD STARS (Software Technology for Adaptable
Reliable Systems) Program. As a key ingredient in advancing the

state of software engineering practices for DOD applications,
the STARS program must foster the software engineering

environments that appear to be the most promising in the near-,
mid-, and long-term.

Senior management of the STARS program, Service Computer

Resource Managers, and senior scientists and engineers in the

DoD have been presented with a range of possibilities and
options. Some of these options are the natural outgrowth of
ongoing DoD R&D programs. Others have been proposed by

industrial sources and trade groups. A key question is which

approaches should be pursued, and what are their relative
strengths and weaknesses?

The authors first distilled the most common, previously

proposed options into seven synopses and these formed the core
of a draft version of this document. In describing these
options, the following approach was taken.

o brief description of the option
o objections to the option
o responses to the objections
o discussion of option characteristics
o summary.

However, organizing the discussion in terms of these
previously proposed alternatives did not form a good basis for
analysis and recommendations (a judgement that was also agreed
to by reviewers). These synopses in updated form are preserved

in the Appendix to this report and are described briefly in the

Background Chapter.

iii -. .. .

FMKDIZO PAGN BLAN".SOf FILM=

The now somewhat shorter main body of the report
concentrates on the requirements, issues, and possibilities in
the near-, mid-, and long-terms. This allows more natural
consideration of the needed mixing and matching of portions of
the original seven proposed alternatives. This discussion and
the recommendations made are aimed at helping STARS decision

makers concerning software engineering environments. However,
to more fully review all the arguments, the Appendix should be

read as well.

iv

I
IACKNOWLDMNS

I

jA number of people provided valuable assistance in the

production of this report. The authors are indebted to Paul

Clements, Vance Mall, Dan Alpert, Bill Carson, P.M. Davies, Neil

Eastman, Jeff Jones, John Manley, Gil Myers, Tricia Oberndorf,

Donn Philpot, Brian Schaar, and Bob Wasilausky for reviewing and

commenting on the draft. The authors also wish to thank Debbie

Franke of the RTI (Research Triangle Institute) for collecting

data on the status of industrial environments for the section on

Sponsoring Commercial Development and the many people (too

numerous to name here) who provided information for this report

over the telephone. Sarah Nash was responsible for editing and

incorporating changes suggested by reviewers of the draft into

the final version. Particular thanks go to Jo Ann Stilley,

Carol Powell, Mary Lou Caldwell, Joyce Tuggles, Zelma Cameron,

and Charlene Smith for typing the manuscript.

I
I{

I v!

ip

I
I

Table of Contents

Foreword iii

Acknowledgments v

Executive Summary ix
1. Background 1

1.1 Goals and Constraints 3

1.2 Characteristics of Set of Previously Proposed Options 6
1.3 A Set of Previously Proposed Options 8

1.4 Issues and Comparisons 22

1.5 Contents of Report 24

2. Review of Key Issues 25

2.1 General Needs 25

2.2 General Issues 27

2.3 Near-Term 31

2.4 Mid-Term 38

9 2.5 Long-Term 44

3. Recommendations for STARS Decision Making 46

Appendix

1. The Joint Service Software Engineering Environment A-I

1.1 Description of Approach A-I

1.2 Objections and Responses A-4

1.3 Issues in Considering this Approach A-7

1.4 Summary A-8

2. Service Laboratories A-9

2.1 Description of Approach A-9

2.2 Objections and Responses A-12

2.3 Summary A-14

3. Off-the-Shelf Alternative A-16

3.1 Description of Approach A-17

3.2 Objections and Responses A-22

3.3 Discussion A-24

3.4 Summary A-39

vii

4m w= NQ P E BL.. ,..oT

Sponsoring Commercial Development A-41

4.1 Description of Approach A-41

4.2 Objections and Responses A-45

4.3 Status of Industrial Environments A-46

4.4 Summary A-48

5. Application-Oriented Environments A4

5.1 Description of Approach A-49

5.2 Objections and Responses A-49

5.3 A Scenario for Acquiring Application-Oriented A-50
Environments

5.4 Summary A-53

6. Revising Policy A-54

6.1 Description of Approach A-55

6.2 Objections and Responses A-57

6.3 Standardization A-58

6.4 Licensing A-63

6.5 Summary A-64

7. Industrial Consortium A-65

7.1 Description of Approach A-65

7.2 Objections and Responses A-69

7.3 Summary A-74

References R- 1

viii

BackgoundEXECUTIVE
SUMARY

Central to the STARS (Software Technology for Adaptable and
Reliable Systems) Program is automated software engineering
environment(s) (SEE) to provide software development and in-
service support for DoD systems with mission critical computer
resources (MCCR). Mission critical software is currently
pervasive, complex and critical, and projections are that it
will be increasingly so in the future. SEEs are essential to
meeting these needs for reliable and maintainable software in an
economical and timely fashion.

SEEs must be capable of producing software suited to MCCR
applications and adaptable to DoD and Service system develop-
ment, acquisition, and support policies and procedures. The
following MCCR requirements limit the types of environments that
are acceptable to MCCR development communities: real-time, high
cost of failure, small to very large in size, long life span,
extreme support requirements, frequent modifications, high
availability requirements, multiple copies of systems, and
Government management control. In addition, a viable alterna-
tive must promote the rapid, widespread use of the SEE and yield
substantial improvements in productivity and reliability. Seven
previously proposed alternatives h~ave been identified for
producing a SEE in the near-, mid-, and long-terms. There are
advantages and disadvantages to each alternative. Important
factors in describing and evaluating SEEs are time to deliver,
technical risk, design methods used, funding, implementors,
ownership, business model, MCCR acquisition strategy, main-
tainer, and management approach. Figure 1 summarizes these
factors for the seven previously proposed alternatives.

The first of the seven, the Joint Service Software
Engineering z-nvironment (JSSEE) alternative, has been launched
by STARS and is advocated by Service management and a number of
Government Laboratories and is compatible with the establishment
of a Software Engineering Institute (SEI). It would be built on
top of the CAIS (Common APSE Interface Set) virtual operating
system and would follow a life cycle oriented methodology. The
major objections to this option are that the top-down design
approach may limit the environment's flexibility and
extensibility, crucial factors in meeting changing requirements
of MCCR systems. Careful planning, particularly prototyping, is
expected to overcome these problems.

Service Laboratories, working cooperatively or independent-
ly, are another alternative for developing a SEE. Although at
least one SEE has already been developed by a Navy Laboratory,
Laboratories in general have limited resources and were

ix

c N

a u

ml ml - a , 4 4,-
LL U L9 4, -L CL N1

inA - 'A W1 -

*0 0

64 IV-

tu 4, 9

. 0. 0. 0. 0.

o 0 0 H~

UJ 0- w,4 ,

a a 0

4, 4, u u u

"5 c
U ~ ~ ~ 0 a,-- - - .1 S

C C C 6 CL4 4

In- C..

oa -0 Z V

a. a.

W o C A 0 = ! 4, vo , 0

'L c I- Ui U

C C C 4

originally established to deal with physical and system-level
engineering problems, not software. Creative Laboratory
management may be able to solve these problems, making this a
low risk (but possibly low payoff) near- to mid-term option.

Modifying existing (off-the-shelf) commercial or Govern-
ment-sponsored SEEs for MCCR use is an attractive alternative
because the technical risk is lower than a "from scratch"
development. However, there may be adoption and adaptation
problems. There is also concern that selection of this
alternative could result in a proliferation of environments.

Identifying and targeting a restricted number of industrial
SEEs for Government investment and support is the basis for the
Sponsoring Commercial Development alternative. The first step
would be to assess the preparedness of industry to participate
in such an alternative. A limited survey of seven organizations
revealed little development of integrated, advanced SEEs. A
more extensive investigation might yield different results.
Other arguments against this option are that it would favor some
contractors over others and that Government should not be subsi-
dizing commercial developments.

The Application-Oriented Environment alternative is
compatible with the other commercial options and involves
developing environments with features and capabilities tailored
to specific applications. There is concern that environments
developed under this option will lack commonality and
compatibility, making use of tools in other than their original
environment difficult or impossible. Duplication of effort and
environment proliferation are other concerns. Development of a
plan that recognizes and tries to minimize these potential
problems is one response to these objections. Environments
would be developed in phases, and public rev.iews at the end of
various phases would select the best candidates to continue
development, reducing parallel efforts.

Reshaping the policies, practices and regulations for
Defense software acquisition may be another way of encouraging
the rapid development, spread, and use of SEEs. Objections to
this alternative are that an imbalance between the acquisition
of hardware and software would result, that the Government can-
not enter into commercial-like agreements, and that the
Government needs to retain rights in data to development
software in order to avoid being tied to a sole-source supplier
of software and services for the life of the system. Responses
to these objections are that imbalances abound in the current
climate; the Government can enter into commercial agreements;
and creative acquisition strategies can overcome proprietary

Modifying the rights in data clauses in acquisition regula-I tions could permit contracting officers to enter into licensing

xi

agreements with software vendors, encouraging the private sector
to develop SEEs for license by the Government. Developing
standards to coordinate the distributed, independent activities
of the tool building community could assure that the private
sector will develop SEEs and tools that are compatible.

Creating an industrial consortium is another way of effect-
ing the development of SEEs. Such an arrangement would allow
industry to pool its resources in pursuit of a goal from which
all could benefit. There are many possible approaches to this
alternative, making characterization of it difficult. The
technical risk is also unknown because the consortium
alternative does not specify a technical approach.

Review of Key Issues

No alternative alone can address all of the near-, mid-,
and long-term needs for an SEE. Therefore, a combination of
approaches will be necessary. A combination should also be less
risky than a single strategy. Some key issues for selecting
this combination for the near-, mid-, and long-term include
DoD's needs, the available technical opportunities and choices,
and the means used to obtain the environment(s), and the costs.

The overall STARS goal is to improve productivity while
achieving greater system reliability and adaptability (in the
face of increasingly demanding requirements) through software
development and in-service support processes that are more
responsive, predictable, and cost-effective. STARS is concerned
with improving both the product (e.g., latent defects per
thousand lines of code) and the process (e.g., productivity).
The automated software engineering environment plays a key role
in STARS' plans as both an essential element in achieving the
goals and also in inserting improved technology into the Defense
software community. In order to have the desired impact, the
environment(s) must be widely accepted and used in the
community. Such acceptance and use can be encouraged by
involvement in the process of defining and obtaining
environment(s). SEEs must evolve or be replaced to meet
changing needs, while continuing to support existing software.
Software developed in an environment should be transportable to
a potentially different support environment, since developers of
DoD software are seldom responsible for maintenance.

SEE capabilities are needed now, and a near-term SEE
produced at low cost and low risk could have a positive effect
on future SEE funding. By leveraging Defense system program
funds and industry funds, STARS could increase the impact of its
own funds. It is important that the costs of duplication of
effort and tool incompatibility be avoided. Developing stan-
dards is one way of ensuring compatibility. General issues
pertaining to the evaluation and selection of SEEs for the

xii

near-, mid-, and long-term include capabilities, technical
risks, transition and evolution, costs, and means of development
and support.

Adapting or enhancing off-the-shelf commercial
environments, commercial operating systems, or Government-
sponsored environments such as the ALS (Ada Language System)
could be a starting point for near-term development of a SEE.
Approaches following either a centralized or decentralized
design control would necessarily be more modest than comparable
mid-term efforts. The most that could probably be done under
centralized design control would be to develop a common core or
methodology-oriented SEE. Sponsoring commercial development
(decentralized design control) in the near-term might yield
common core SEEs with orientations limited to a methodology,
application, or organization. Revising policies (including
business practices) and establishing workproduct interfaces are
important near-term actions independent of the options with
which they may be combined. Once SEE directions are
established, tools and partial prototypes that are being
developed for the mid-term can be used early in the near-term.
It may also be possible to organize contractor IR&D and DoD MCCR
system efforts to make them compatible and non-duplicative.
Specifying interfaces and propagating the CAIS implementation at
this point will also foster compatibility.

Expectations for the mid-term SEE include support for the
entire life cycle, a high level of integration for DoD
standards, and the ability to support, at reasonable cost, pro-
gramming languages needed for post-deployment support of exist-
ing systems. The mid-term provides enough time to analyze,
design, construct, and deliver a SEE from first principles, in-
corporating the best of previous work.

The possibilities for separately constructing portions of
the environment(s) are illuminated by a "layered" model that
sbparates dependencies on project, organization, application
area, methodology, and the underlying computing system from the
common core. The importance of common core interfaces makes it
critical to establish them before higher layers are attempted.
In addition, the cost of the common core will be large enough to
probably make it impractical to do multiple versions unless
significant non-STARS investment can be attracted. Such
investment, however, could alternately be encouraged in the
other layers with less of an issue of duplication.

Previously proposed alternatives related to the mid-term
include the JSSEE, Industrial Consortium, Sponsoring Commercial
Development, and Application-Oriented alternatives. The amount
of duplication of effort that DoD should fund and the amount of
investment from other sources that can be encouraged/achieved
are key to selecting an alternative for the mid-term.

The main concern with respect to the long-term is transi-

xiii

tion to radically different paradigms. At a minimum,
compatibility at the workproduct interface level should allow
translation of the relevant subset of workproducts from the mid-
to long-term environment. Very desirable would be adequate mid-
term extensibility to incorporate radical paradigms or upward
compatibility from mid- to long-term environments. Development
of radical long-term capabilities will require earlier STARS and
prototyping. Areas for R&D and concern for extensibility may
include logic programming, expert systems, functional
programming, transformal programming, and high-level end-user
"programming."

Recommendations for STARS Decision Making

Recommendations for STARS decision making suggest an
exploration and decision process as well as a number of possible
activities. It is not expected that the SJPO (STARS Joint
Program Office) should necessarily perform all of the
activities.

The one conclusion that stands out the most firmly from the
review of key issues is the importance of establishing early
workproduct interfaces. Regardless of the other decisions made,
the workproduct interfaces will play a significant role for some
time, and they must be of high quality and extensible. The
STARS Program should pursue them vigorously.

Recommendation 1: Pursue vigorously the specification of
workproduct interfaces and their standardization.

The decision process for other aspects that are not so firm
should start with a review of goals by STARS top management.
These should be covered in the sequence of long-term, mid-term,
and finally near-term. The general relative importance of the
various goals in the different periods should be established.

This review of goals, of course, relates to STARS overall
programmatic goals. Its main purposes are to make sure that any
impact of future goals is reflected back to earlier periods and
that the relative importance of goals is seriously considered.

Recommendation 2: Establish a STARS top management under-
standing of possible goals and their importance in the
long-, mid-, and near-terMs.

Next, a preliminary decision should be made on the overall
approach, primarily from a capability viewpoint. This should
address such overall issues as:

o Amount of capability desired and in what timeframe
o Number of different thrusts involved
o Amount of parallelism
o Level of continuity
o Rough level of effort involved over time

xiv

0 Relationships to current efforts
0 Decisions that can/should be delayed.

Recommendation 3: An (or at most a few) overall
approach(es) in terms of capabilities and technical efforts
structured over time should be established before
considering the near- and mid-terms separately.

In the near-term, the exact capabilities and approaches
will depend on the relative importance given the various goals.
However, the issue of the basis or bases from which to start
must be decided. Currently, one particular important piece of
data is missing--ALS performance and quality. A systematic
assessment of other possible bases is also missing although
relatively recent assessments exist that could form a beginning
for such an assessment.

Recommendation 4: ALS quality, performance and suitability
as a basis for enhancement with near-term capabilities
should be evaluated as soon as possible.

Recommendation 5: A systematic assessment of off-the-shelf
alternatives that might form bases for enhancement should
be performed such that results are available when a con-
clusion is reached in the ALS evaluation.

It should also be noted that the use of multiple bases
reduces the risk of subsequent discovery of serious problems
with any one of them. ALS could, for example, be included in
such a set, even if it were not initially entirely suitable.

Recommendation 6: Consider combination strategies that do
not create total dependence on any one high-risk
element/implementation.

The near- and mid-term efforts should be reviewed for
possible double-duty tasks that could combine tasks common to
both to provide near-term capabilities and to contribute to mid-
term efforts. Prototyping and early availability of mid-term
tools are areas to look for possibilities.

Recommendation 7: Consider tasks that can both provide
near-term capability and contribute toward mid-term capa-
bilities.

Once technical efforts are sketched out for the near-and
mid-terms, decisions must be made on task performers and
acquisition strategy. The process of making these decisions
will undoubtedly cause some iterations through earlier more
technically-oriented decisions and will depend on a larger
number of factors. However, some general recommendations can be
made.

Recommendation 8: Avoid becoming overly dependent for suc-

xv

cess on any one organization.

Recommendation 9: Involve all three Services, DoD agencies
and a number of Laboratories and industrial firms.

Recommendation 10: Obtain quality expertise in all the
necessary areas for each task.

Recommendation 11: Insure that continuous visibility and
incentives exist and that milestones are frequent enough to
allow for recovery.

Recommendation 12: Emphasize compatibility among mid-term
efforts.

Recommendation 13: Strive for leverage and encourage the
development of a marketplace in compatible tools.

This last recommendation needs some considerable early ac-
tivity to establish the true potential for leverage in industry.
The few inquiries made as part of investigating the Sponsoring
Commercial Development previously proposed alternative were not
encouraging, but DoD needs to collect harder data on industrial
readiness to participate with the Government in this area.

Recommendation 14: Collect firm, verified information on
industrial readiness and potential for leverage before
making final decisions on acquisition approaches.

Finally, three general recommendations are made on the
decision process itself.

Recommendation 15: Prepare a schedule for the needed
decisions and insure that information generation or col-
lection and staff work is done before decision point.

Recommendation 16: Avoid making final commitments sooner
than necessary.

For example, final commitment on mid-term acquisition
strategy can probably be delayed at least until the first set of
workproduct interfaces is specified, i.e., probably late 1985.

Recommendation 17: Take advantage of all of the existing
knowledge in this area since a number of organizations have
been active, and can make useful contributions to the
decision.

Recommendation 18: Recognize that SEES are complex objects
containing a number of potential portions or features with
varying maturity, technical risks, ranges of possible
sophistication, dependencies, cost, and benefits and that
these portions and features may require varying treatment.

xvi

1. Background

One of the central items in the Software Technology for

Adaptable Reliable Systems (STARS) Program is the automated

software engineering environment (SEE)--that is, a set of

capabilities that support software development and in-service

support. It is a key to the timely, economically feasible

production of reliable and maintainable software to meet the

Department of Defense's current and planned military

requirements.

This study investigates programmatic alternatives and

related technical issues for meeting the DOD needs for software

engineering environments in the near-(l-3 years), mid-(4-10

years) and long-terms. Goals and constraints are discussed,

previously proposed alternatives outlined, and analysis

provided. A major finding of this study is that only a

combination of approaches, incorporating technical policy-

oriented strategies, can succeed in providing the software

production capabilities* that will be needed for military

systems in the near-, mid-, and long-terms.

*These capabilities are variously referred to as software

engineering environments, toolsets, and factories. The major
distinctions between these capabilities seems to concern the
degree of automation and integration. For extended discussions
of toolsets and environments, the reader can consult the book
Software Tools by B. Kernighan and T. Plauger (Prentice-Hall,
1975) and the paper "A Software Engineering Environment for
Weapon System Software" by H. Steubing (IEEE Transactions on
Software Engineering, July, 1984). The term software factory
has recently gained currency as a means to identify automated
software development and evolution environments whose
"production lines" can be tailored for the unique mission
critical software needs of individual systems (see also "A
Computer-Aided Software Engineering Foundation for Software
Factories" by J. Manley in the Proceedings of COMPCON, Fall
1984).

1I

The study reported in (1) characterizes the current and

future requirements of DOD software development. By virtually

every measure of complexity, (e.g. size, cost) each succeeding

generation of military technology requires mission critical

software that is more complex than its predecessors. Increased

operational requirements together with other requirements (e.g.,

extreme reliability) have led to software complexity that

challenged the capabilities of the extant technology. Existing

software production capabilities are often inadequate.

A question left unanswered in the report is: Can future

military requirements be met without taking special action?

The answer is almost certainly no. The demands of enhanced

software requirements are growing too quickly. Consider, for

example, software requirements for radar target acquisition

systems. Early radar applications were not computerized. In

the earliest embedded computer applications, only a few

simultaneous targets could be tracked and identified. In

current air defense systems - such as Aegis and Patriot -

hundreds of targets must be tracked and engaged. Planning for

space-based ballistic missile defense systems requires the

coordinated tracking of tens of thousands of objects.

Furthermore, this software must be essentially error-free,

easily modified to adapt to changing threats and must use

hardware resources very efficiently. Since existing technology

can now barely keep pace with requirements, it seems unlikely

that the same technology with normal progress over time can

produce - within realistic economic limits - software whose

basic characteristics exceed those of current systems by two or

more orders of magnitude.

The risks of not taking action are very high. The danger

in not responding to this technology shortfall is the potential

failure to meet the mission requirements for future military

systems of critical national importance.

2

This report concentrates on another option - applying
special efforts to upgrade and modernize DoD software

engineering capabilities via an automated software engineering

environment or automated software "factory".

1.1 Goals and Constraints

A viable alternative for providing these capabilities to
the Defense software community must satisfy two sets of

constraints. First, the alternative must provide for the
production of software that is suited to military mission

critical computer resources (MCCR). Second, the alternative

must be adaptable to the nature of DoD and Service system

development, acquisition, and support.

The peculiar requirements of MCCR software are largely
technical. They may be characterized by the simultaneous

imposition of extreme system characteristics and parameters.
This should be contrasted with non-MCCR applications, which may
exhibit any of these characteristics but which rarely possess

them in combination or in such extreme degrees. Typical of

these characteristics are the following.

1. Real Time: A frequent requirement for MCCR
applications is rapid real-time response. MCCR
systems may have real time response requirements in

the 10 microsecond range.

2. Cost of Failure: It is in the nature of military
applications that system failures are catastrophic--

failure costs measured in terms of mission success

* or human life

3. Size: The scale of MCCR application computer systems

ranges from very small (e.g., the microprocessors of

I3

Maverick) to very large (e.g., the large mainframe

computers of WWMCCS (World-wide military Command and

Control System)).

4. Duration: The development life cycle of MCCR systems
tends to be very long. It is not unusual for system

life cycles to span 15-20 years from inception to

deployment. Once fielded many systems have projected

life spans of 20 years or more.

5. Maintenance and Support: MCCR systems are subject to

extreme support requirements. Systems may be subject

to frequent modification. Availability requirements

lead to very short time-to-repair characteristics. To

complicate matters, maintenance personnel are rarely

those who designed and constructed the system. MCCR

software systems may be supported at sites far removed

from their operational environment.

6. multiplicative Failure Rates: In many applications,

relatively low failure rates can be achieved by

observing individual systems in isolation. By

comparison, MCCR systems are sometimes duplicated in
hundreds (e.g. aircraft) or thousands (e.g. missiles)

of platforms, so that the number of instruction

executions of MCCR software is very large. As a

consequence, even very low failure rates can result in

significantly many system failures.

7. Controlled Development: While many modern software

development organizations impose programming standards

and requirements, the DoD acquisition process results

in developments that are controlled, monitored,

regulated and constrained in ways that might be

excessive in other applications.

4

These constraints have tended to limit the types of

environments that are acceptable to the MCCR software

development communities. For example, a recent Navy study of
requirements for a software engineering environment (2)
concluded with the following recommendations.

1. The software engineering environment must support the

entire software life cycle.

2. The software engineering environment must be

methodology driven.

3. The environment should support identified tools and

techniques in each phase of the life cycle.

4. The environment should be capable of aiding in the

configuration management of baselined software

components that persist over the life cycle of the

(target) MCCR system.

Each of the Services has studied the problem and derived

sets of requirements on software engineering environments that

respond to similar recommendations. The Navy recommendations,

for example, were translated into a number of "guiding

principles":

1. The software engineering environmeni must be

consistent with the APSE (Ada Programming Support
Environment). It must include full support for Ada

and an integrated database. It must also provide

support for existing standard languages.

2. The entire lifecycle of software is included in the

software development process. This process and its

related methodologies are the foundation of the

environment.

3. The software engineering environment must support, to

the greatest extent possible, the re-use of design

components and software to eliminate re-invention.

4. The environment must be flexible enough to evolve,

support new standards, and to support the re-

engineering of software as it is upgraded.

5. The environment must accommodate a variety of host

computers and computer configurations.

A viable alternative must promote the rapid, widespread use

of the environment(s) that yield substantial improvements in

productivity and reliability while meeting requirements such as

those listed above. In evaluating alternatives, key parameters

will include feasibility, costs, capabilities and benefits,

risks, and timing.

Particularly important to the problem of timing are both

providing significant capabilities in the near-term and avoiding

a long, expensive software engineering environment development

resulting in an environment that is not up-to-date when finally

fielded. As yet, no clearly superior single approach to meeting

Service requirements such as these has appeared. In fact,

Government sponsored near-term approaches (e.g., contractural

efforts to define and develop MAPSEs (Minimal Ada Programming

Support Environments)) have met with schedule and funding delays

that further limit the near-term options available to Service

planning offices and software specialists in Program offices.

1.2 Characteristics of Set of Previously Proposed Options

This chapter outlines and characterizes seven previously

proposed alternatives for supplying near-, mid-, and long-term

capabilities. Each option has been described by a vector of ten

characteristics. (Longer descriptions are in the Appendix.)

6

Time to Deliver: Availability within three years is

defined to be near-term, mid-term availability is in the four to

ten year range, while long-term solutions are those that require

more than ten years to deliver.

Technical Risk: Risk is an assessment of the probability

of failing to meet objectives. Since exact risk assessments are

notoriously difficult to derive for software intensive issues,

risk will be characterized by the novelty of the technology

required. For example, incremental improvements on demonstrated

technologies are generally viewed as low risk. On the other

hand, radically new technical approaches represent relatively

higher risk. Different applications and technologies within an

environment may have varying technical risks, making overall

risk assessment complex.

Design Methods: Methodologies can vary between those that

integrate and combine existing capabilities--the "bottom-up"

approach--and those that require a "from scratch" design that

may set its own requirements and translate into capabilities

that are significantly different from those that are currently

available (the top-down approach). While these extremes may

affect technical risk, they are also important factors in

determining risk associated with schedules and budgets.

Funding: various sources of funding for implementing an

alternative method of supplying environments are possible and

range from Government-funded developments to those that are sup-

ported entirely with private sector funds. Intermediate sources

include using Government funds to leverage an existing

commercial investment and joint venture arrangements between

Government and private sectors in which both sets of investors

share overall risks and benefits.

Implementors: Qualified technical personnel in the private

sector, Government/military, or intermediate organizations such

7

as the proposed Software Engineering Institute (SEI) (3) may

design, construct or maintain an environment. "Commercial"

refers to private sector ventures that are not Government-

sponsored, whereas "Contractor" refers to a Government-

contracted venture.

Ownership: Ultimate property rights in an environment may

be vested in private or public hands. Technologies may be

proprietary, or Government-owned.

Business model: Alternative environments may be developed

using Government acquisition and procurement practices,

commercial leasing/licensing practices, or a combination of

both. More than one business model may be appropriate for an

option depending on its implementation.

M4CCR Acquisition Strategy: Ownership, business models and

risk assessments may suggest one of several approaches to

placing an environment into the acquisition process when it is

used for an MCCR application. For example, Government-

Furnished Equipment (GFE) may be the appropriate approach in

some situations whereas in others, it may be sufficient to

specify interfaces and allow the MCCR developer to acquire the

environment of his choice through purchase or license. In still

other cases, it may be appropriate to employ current practices.

Maintainer: The options for support/maintenance personnel

are the developer, a separately identified life cycle support

contractor, or a Government software support facility.

Management Approach: The management of an environment

development may be centralized, distributed to a large number of

sites or decentralized to a small number of sites.

1.3 A Set of Previously Proposed options

The options listed below have been proposed at various

times over several years and each has advocates and critics

ranging from various industrial and trade associations to senior

8

program management in the Department of Defense. This chapter

does not take a position on the absolute desirability of

adopting any single option, but rather seeks only to compare the

alternatives relative to the ten characteristics identified in

section 1.2 of this report. These are not the only

characteristics of interest, however. Since we have not aimed

for a comparative evaluation of alternatives, we have not

attempted an exhaustive analysis of characteristics. Rather, we

have concentrated on the characteristics which have been

mentioned in recent reports, panels and critigues as having

visible programmatic impact on STARS. A careful setting of

priorities for these options should certainly consider other

factors. *

1.3.1 The Joint Service Software Engineering Environment.

This Government-funded, Government-owned approach (called the

JSSEE) has been launched by STARS and currently involves a

number of DoD and Service Laboratories. The goal of the JSSEE

is to produce a common software engineering environment to meet

the needs of a wide range of DoD organizations, projects, and

applications. The environment would be built on top of the

Common APSE Interface Set (CAIS) virtual operating system and

utilize previous MAPSE efforts. It would follow a life cycle

oriented mLethodology such as defined in DOD-STD-SDS. Current

approaches to JSSEE involve a top-down design of an environment

starting with a common core capability.

*Other characteristics of interest include the technical aspects
of the architecture, relationship to a methodology,
extensibility, portability, existence of prototypes, resource

* utilization, and cost.

9

Some objections to the JSSEE revolve around a general

concern that the top-down approach will not afford the

environment the flexibility or extensibility necessary for the

development of large scale software systems destined to be used

in new and not always predictable ways. Critics argue that the

requirements cannot be fully defined at the beginning of the

environment development and that fixing requirements at the

beginning creates an inflexible system that is not easily

extended. Other objections are that the environment will be

difficult to transport to new host machines or new development

situations, that the JSSEE will take too long to develop, and

that it will cost too much.

Advocates of the JSSEE believe that careful planning can

overcome most of these objections. By using prototyping, they

plan to gather feedback from users on requirements, solve design

problems, and develop a flexible architecture to accommodate

future needs. Environment integration, achieved by defining a

set of interfaces, will result in an integrated collection of

tools that will remain integrated as the collection expands and

-ven if it supports an expanded set of methodologies.

Some issues confronting the JSSEE alternative are the need

for an immediate capability, interoperability with tools

developed for other methodologies or approaches to integration,

the level of commonality and the technical feasibility of the

JSSEE. A near-term option that might solve the need for an

immediate capability would be for JSSEE to augment and

distribute a Government-sponsored APSE such as the Army ALS (Ada

Language System). Integrating the environment through a common

set of interfaces will enable the JSSEE to accommodate tools

developed for other methodologies or for other approaches to

integration. The JSSEE plans to approach implementation of

lower risk, better understood segments of the environment (e.g.

10

support for code and test) first while exploratory efforts

j proceed in higher risk segments (e.g. support for requirements

analysis).

1.3.2 Service Laboratories. House and Senate Conference

committees on 1984 Defense appropriations raised the following

issue with respect to the STARS initiative: why can't the goals

of the STARS program be accommodated within the structure of

existing Service Laboratories? The management of a suitable

software engineering environment in such a setting would be

distributed with Government funding and ownership. Since the

JSSEE team membership is drawn mainly from Service Laboratories,

this alternative differs from the JSSEE alternative mainly in

the choice of implementors, time to deliver, and technical risk.

As opposed to the JSSEE alternative which is essentially mid- to

long-term, Service Laboratories present a near- to mid-term and

possibly lower risk alternative.

Laboratories can operate in an independent or cooperative

mode to develop a software engineering environment. In either

case, the functions of research (basic and applied), development

and support, and communications and distribution, need to be

assigned. One possibility is for the Software Engineering

Institute to perform the research and software development and

support functions and the Laboratories to assume responsibility

for distribution, communication, and qualification functions.

For example, the Navy has adopted a model for Laboratory

operation in which the developers of DoD software play a key

role. The Laboratories qualify and demonstrate new technologies

while external (usually academic) institutions have

responsibility for research.

Objections raised to this alternative are that Laboratories

have limited resources (both budgetary and personnel), and have

not commonly developed advanced, modern software engineering

environments in the past. In addition, using the Laboratory

approach introduces the potential for costly duplication of

resources unless Laboratories engage in extensive cooperation.

Originally established to deal with physical and system-level

engineering problems, Laboratories also may not be the best

structure in which to develop and implement software.

However, creative Laboratory management can avoid some of

these potential problems. Cooperative efforts between

Laboratories that divide functions and pool resources are one

way to partially deal with limited resources. Delegating some

of the environment definition and development burden to the SEI

(or its functional equivalent) is another solution to the

problem of limited personnel resources. One advantage that

Service Laboratories have over commercial settings is that

Laboratory structures are flexible and not bound by market

demands.

Laboratories may in some ways be a good near- to mid-term

alternative. The incremental, evolutionary approach that

personnel and budgetary limitations are likely to force

Laboratories to adopt makes it a low risk option---but possibly

with low payoff in the resulting capabilities as well.

1.3.3 Off-the-Shelf Alternative. An alternative that has

a number of advocates is the adaptation and certification for

military use of an existing commercial or Government-sponsored

environment. This is a bottom-up near term strategy in which

attractive off-the-shelf software development environments with

12

I
!

good track records are captured and augmented for DoD use.

Examples of some available and soon to be available environments

include Xerox Development Environment (XDE), Unix, ITT

Programming Support Environment (PSE), and the Service-sponsored

MAPSEs.

In discussing this alternative the method of adoption and

various adaptation issues should be addressed. MCCR projects

could adopt environments through license, purchase, or

procurement. Most off-the-shelf environments will not be

immediately suitable for MCCR use and will require adaptation.

Some basic extensions to the core of the environment might

involve rehosting, database management systems, human

interfaces, and kernel software engineering environments.

Another adaptability issue is whether an environment will be

adaptable to multiple programming languages, such as Ada and

other high-order languages. Methodology support is another

adaptability factor, especially when there is an incompatibility

between the methodology being imposed on the MCCR development

and the methodology that is supported by the environment. The

set of tasks supported by the tool set in the environment is

another important consideration in matching an environment to an

MCCR problem. It may be necessary to absorb MCCR-related tools

as well as future tools.

Off-the-shelf environments are frequently dismissed as

infeasible for the following reasons. The environments were not

designed for MCCR applications and are therefore unsuitable.

Proprietary barriers present long-term support risks of sole

source reliance. A proliferation of unstandardized environments

introduces new risks to the software development process.

Industry will not make available for MCCR applications their

most attractive environments for fear of losing their rights to

the environment.

13

I

Many of these assertions are false. Although not designed

for MCCR use, many commercial environments are being applied to

applications that possess the extreme requirements of MCCR

applications. Creative acquisition strategies can reduce the

risks posed by proprietary barriers. Indeed, creative and well-

managed software test and evaluation has been demonstrated to be

a determining factor in the successful transition between

development and maintenance environments.

1.3.4 Sponsoring Commercial Development. This is

essentially the model upon which the DoD Very High Speed

Integrated Circuit (VHSIC) program is based. The essence of

this strategy is to identify and target a restricted number of

industrial sites for further development. Criteria for enhanced

Government investment in these sites might, for example, be

based on the extent to which Government funding leverages an

existing commercial investment in the environment. once

capabilities are enhanced at the selected sites, other

technology transitioning programs would be implemented to ensure

widespread access to the technology. This alternative may

exhibit a mixture of characteristics depending on the existing

capabilities at a selected contractor's site.

A number of factors are critical to assessing the overall

preparedness of industry to participate in this way. One

consideration is whether or not the company uses a software

development approach or methodology that is suitable for

automation in an environment. Another consideration is the

degree to which the methodology is automated and whether the

company is willing to adapt and export the automated

capabilities. Success of this approach depends on a large total

industry and Government investment.

14

The basic strategy for this alternative is to conduct an

assessment to identify candidate environments and methodologies

for investment by the Government. A small number of candidate

environments would be selected as a result of the assessment.

Selection criteria could include the cost of development yet to

be undertaken, the extent to which the capability represented

advances the state of practice for software development, the

degree of technical risk involved in completing the environment,

the willingness of the company to transition its technology, and

the global assessment of how MCCR software development would be

affected by the availability of the environment over near-,

mid-, and long-term horizons. Contracts would be awarded for

the completion and delivery of environments and tool sets that

support the selected methodologies. The final task would be to

successfully transition the developed environments into use.

Three primary objections can be raised to this alternative.

The first is that the approach is based on a false comparison

between software and integrated circuits. The second is that it

throws Government support behind a few contractors that will

eventually result in favoritism. Third, industry has not

prepared itself and is seeking a Government subsidy for Research

and Development (R&D) programs that should be supported

privately.

Indeed there are important differences between software and

integrated circuits. It is difficult to measure productivity

improvements and return on investment for a software engineering

environment. The essential outcomes of the selection and

contracting process will have to be easily identifiable

technological innovations. Not only are such innovations rare,

but they are not always identified when they first appear.

15

The second objection is difficult to counter; it does seem

that this alternative might give some contractors an unfair

advantage, ultimately limiting competition and channeling

technology into a few relatively narrow paths.

Inquiries of a small cross-section of seven industrial

organizations gives some indication of industrial preparedness,

the issue raised by the third objection. The organizations were

questioned about three aspects of their environment

capabilities: (1) methodology, (2) automated environments, and

(3) the extent to which Government investment would be

desirable. Six of the seven organizations claimed to use a

methodology for software development; three cited the Yourdon

methodology and the remainder actually only had plans to develop

a methodology or confused it with the life cycle model in effect

in their organization. No group reported documents or

experience with a life cycle methodology. Only one of the seven

claimed any degree of automated support for their methodology

and this turned out to consist of a user interface capability.

None of the organizations queried had a history of or plans for

creating an integrated environment architecture. All of the

groups expressed interest in Government support for tool

development although they wanted to retain rights to the

products developed, claiming that the Government investment

would be in "research" and not in the product.

1.3.5 Application-Oriented Environments. This alternative

is compatible with any of the alternative commercial options and

has been advocated by at least one large trade association. The

key concept is to support the development of environments with

features and capabilities that are tailored to specific

applications. It is based on the assumption that software

production for specific applications, military avionics, for

16

example, requires environments and methodologies that are

significantly different from those arising in another

applications such as command and control.

The major objection to this approach is the lack of

commonality among environments, making integration into a single

environment or a small set of alternative environments difficult

or impossible. Environments might also include proprietary

information that is unavailable to other elements of the DoD

community. The environments would attend only to the problems

of developing and supporting software, not to the problems of

acquiring software. This alternative could result in a high

degree of duplication of effort that may not be justified in

terms of the risk involved. Finally, software engineering

environments that are not methodology and life cycle driven may

fail to be general enough to gain widespread use, resulting in a
proliferation of environments.

The problems of ownership and availability of the produced

environments have to be resolved by innovative approaches to

government/industry rights in data issues. The other objections
can be addressed by developing a plan that recognizes and tries

to minimize potential problems.

Such a plan might resolve the problems of duplication of

effort and the inability to integrate the produced environments
by developing environments in phases, gradually reducing the

amount of parallel effort. Figure 1-1 illustrates the logical
organization of the environment to foster commonality. Several

application-oriented environment development projects could be
started in parallel (Phase I). A public review at the end of
Phase I would identify potential commonality among parts and

decide which of the parallel efforts should carry on the

development of common parts. Phase II would result in a design
for the environment and brief plans for implementing,

demonstrating, and transitioning the environment into use.
Another public review would be held to scrub and homogenize the

designs and to decide which efforts would proceed further.

17

APPLICATION-SPECIFIC LAYER: tools specific to the chosen

application area

GROUP LAYER: tools supporting the chosen methodology and the

chosen management approach

CORE LAYER: generic tools, tools supporting tool integration

and interoperability, and tools supporting environment

extensibility

BASE ENVIRONMENT: a specific primitive environment chosen to

foster portability and provide common facilities; could be

one of the MAPSE's currently under construction through

Government support (i.e., the ALS)

Figure 1-1: An Organization for the Multiple

Development Efforts

18

Phases III and IV would proceed to develop and demonstrate the

specific application-oriented environments utilizing the

commonly built parts. While only a skeletal plan, this plan

would provide a basic approach to developing application-
oriented environments, reducing the duplication of effort and
increasing the probability that the resulting environments could

be integrated.

1.3.6 Revising Policy. This alternative involves

reshaping the policies, practices and regulations in Defense
software acquisition that may be inhibitors to the rapid spread

and use of advanced software production techniques. Strictly

speaking, this alternative is a variation of existing

strategies. Policy approaches appear to be widely favored in
industrial and in some DoD circles. For example, a STARS-

sponsored "Technical Working Group" convened by the Institute

for Defense Analyses to make recommendations concerning Rights

in Data Issues as they apply to software development

technologies advocated a radical shift in the form and content

of acquisition regulations in this area.

There are some objections to this approach. Some critics

are concerned that changes in the acquisition process for

software would create an imbalance in the acquisition of

hardware and software. It can be argued that imbalances abound

in the current climate and that an imbalance in the acquisition

process is secondary to the goal of improving the development

and engineering of operational software. It is commonly, and

incorrectly believed by many critics of this option that as a

matter of policy, the Government cannot enter into commercial

agreements such as licensing agreements. Critics also argue
that the Government needs rights in data to development software

in order to insure the maintainability of the delivered software

and to avoid being tied to a sole-source supplier of software
and services for the life of the delivered system. As stated
elsewhere, creative acquisition strategies can overcome

19

proprietary barriers. There is some concern that modifying

acquisition policies too drastically introduces new elements of

risk that affect the stability of the acquisition. The response

to this objection is that evolutionary forces by themselves are

not sufficient to create the technology required to build the

software in the next generation of DoD systems.

As part of this option, as well as others, standards could

be developed to coordinate the distributed, independent

activities of the tool building community. Standards could be

defined for development, the methodologies to be used, and the

interfaces among the tools that support these methodologies.

Then, a mechanism would be developed for certifying tools and

making them available for use in an environment. The final step

would be to evolve the standards to reflect new software

technology and upgrade the collection of certified tools.

Several objections to this approach include unnecessary

duplication of effort resulting from a lack of more direct

coordination, the difficulties in producing and certifying

tools, and the potential that standards will either be too

strict, leading to few tools achieving certification, or too

lenient, leading to a lack of integration in the tool

collection. It is possible to construct a plan to minimize the

negative effect of various problems. One possibility is to

create pools of tools. Pools could be application-specific or

local to a project. Before entering the pool, a tool would have

to be certified. An initial selection filter would classify

tools according to a taxonomy, making it easier for potential

users to identify tools of value to their project. Pools would

consist of applicable, existing tools, and tools developed to

make the overall collection complete. As tools are developed or

re-engineered they would go through the certification process

before entering the pool.

20

The major barriers to effective modification of acquisition

practices are the rights in data clauses in acquisition

regulations. These regulations can be modified to permit
contracting officers to enter into licensing agreements with

software vendors. Such a license would allow the contractor to

maintain most rights to the software even if the software were

developed in part at Government expense. The Government would

have the right to use the software solely for its own purposes.

If the software were developed solely at the contractor's

expense, the developer would receive a negotiated royalty for

use. The Government could direct the software developer and an

inquiring party to enter into a direct licensing agreement

rather than disclose proprietary information. The terms of the

license should include steps that the contractor can take to

protect proprietary information and offer the possibility of

seeking damages if a license is breached.

1.3.7 Industrial Consortium. The consortium model is a

variation of the commercial alternative inspired by the

appearance of organizations such as the Microelectronics and

Computer Technology Corporation (MCC) and the Semiconductor

Research Corporation (SRC). In its simplest form, the

consortium can be the private sector analog of the JSSEE

approach. The essential characteristics of the option are the

pooling of commercial resources to specify and design--in top-

down fashion--a suitable environment. Ownership alternatives,

impact on acquisition strategies and management options vary

depending on the details. It is possible that the proposed SEI

(Software Engineering Institute) can play a role in interfacing

with an industrial consortium.

Organizational, legal, financial, technical, and marketing

issues must be resolved before this alternative could be

implemented effectively. Several alternatives are possible for

21

each. Consortia can be staffed by a variety of combinations of

academic and industry personnel in addition to new hires. One

staffing-related objection to the consortium approach is that

consortia tend not to attract experienced industry people.

"Borrowing" staff from industry for extended time periods solves

that problem. A legal objection to consortia is that they

violate antitrust laws. The Justice Department allowed the MCC

to be organized as a for-profit corporation by its shareholder

companies and is reviewing several other similar proposals.

However, MCC is allowed to only do pre-competitive R&D not

produce products.

Financial issues in setting up a consortium include finding

a favorable tax climate, seeking land and/or equipment donations

to get the consortium going, and handling joint funding.

Technical issues include handling proprietary rights and the

rights in data issue, selecting a technical approach to building

a software development environment, and assigning responsibility

for the resulting product. It is also necessary to define the

market for which the environment is to be developed.

1.4 Inadequacy of Previously Proposed Alternatives

A summary of the characteristics exhibited by the seven

options listed above is given in Figure 1-2. Since we have not

assigned weights to the characteristics or utilities to their

values, no clearly preferred choice emerges from this table.

The Appendix describes each alternative in greater detail,

discusses objections, and responds to the objections.

The picture that does emerge from Figure 1-2 is that a
"single strategy" approach is very risky. If the STARS program

is to address near-term options that offer immediate

improvements in capability, mid-term options that reflect

current assessments of military need (1) and long-term options

that can incorporate technology advances that are as yet

22

Ni N

Co- a.- 0 .0 ;u

. . 1

V) 4, -L 0t
. . c. m a.~~I VI I-

r c

o ~

[j U CL L

-: C~fl ,I-C,,4, 4

cu Cu~ ; 1>

4,0 o. o. 0.

i0 C .0 0 4,

-I U~a 41

-00
0. f=C 2I 0

I #j L L.l 0I .l o.

'A 4., o , w,.. c -Lo-.-
4m o I .5,

C2

unforeseen, a combination of approaches is essential since none

of the options shown in Figure 1-2 address all of the near-,

mid-, and long-term issues.

Another reason for favoring a combined strategy is the

peculiar mix of options studied here. Some options address the

technology itself (e.g. JSSEE or the Off-the-Shelf Alternatives)

while others concern how the technology is to be developed and

inserted (e.g. Service Laboratories and Industrial Consortium).

Therefore, a feasible strategy for delivering software

engineering environments will inevitably be a combination of

these alternatives (the technology and the way in which it is

developed and inserted).

1.5 Contents of Report

Given the inadequacy of any one of the previously proposed

alternatives, Chapter 2 explores the possibilities of combining

portions of them, looking first at the near-term, then at the

mid-term, and finally at the long-term. The results of Chapter

2 lead to recommendations given in Chapter 3. The Appendix

contains longer descriptions of the previously proposed

alternatives, discusses more fully some points made in the body

of the report, and reviews other arguments.

24

2. Review of Key Issues

This chapter reviews the key issues for STARS decision

making -- first in general and then for the near-, mid-, and

long-term possibilities. These issues include DoD's needs, the

technical opportunities and choices available (including

resulting capabilities and combining approaches), the means used

to obtain the environment(s), and the costs involved.

2.1 General Needs

The overall STARS goal is to improve productivity while

achieving greater system reliability and adaptability (in the

face of increasingly demanding requirements) through software

development and in-service support processes that are more

responsive, predictable, and cost-effective. STARS is concerned

with improving both the product (e.g., latent defects per

thousand lines of code) and the process (e.g., productivity).

The automated software engineering environment plays a key role

in STARS' plans as both an essential element in achieving the

goals and also in inserting improved technology into the Defense

software community. In order to have the desired impact, the

environment(s) must be widely accepted and used in the

community. Such acceptance and use can be encouraged by

involvement in the process of defining and obtaining

environment(s).

Since MCCR requirements and SEE technological opportunities

will expand over time, the environment(s) in use must improve

either through evolution or replacement. However, existing

software must be supported even if it is incompatible or

insufficient in relation to the new SEE technology.

In-service or post-deployment software support is often

* done by the Government rather than the original development

contractor. This fact together with the need to avoid
contractor lock-in means it must be possible to deliver the

25

software (including all its specifications, designs, tests,

etc.) in a form that can be supported by the DoD's

environment(s)--or in some cases another contractor's

environment.

In obtaining environment(s) for MCCR projects, STARS would,

of course, like to obtain capabilities early, at low cost in

STARS funds, and at low technical risk. Having some

capabilities available in the near-term might also have a

positive effect on out-year funding decisions for the STARS

Program.

The impact of STARS funds can be increased if they leverage

(cause to have spent) other funds, particularly Defense systems

program funds and industry funds. In order for this to be most

effective, the results of these investments must be cumulative

and widely available in the Defense community. Duplication that

is unwarranted by risk must be avoided, and the capabilities

developed must be technically compatible and not restricted to

the developer. In order to avoid the necessity for a

significant amount of coordination, the ability to independently

develop compatible tools would be very desirable.

The most obvious way to ensure such compatibility is to

standardize interfaces within and between environments (13).

The most attractive candidates for standardization are

information contents, formats, and notations for deliverable

work products in the SEE database. Defining the work products

in each phase of the life cycle automatically defines interfaces

for tools that input or output them (2). The new Joint

Logistics Commanders' standards provide part of the needed tri-

Service basis for definition and standardization.

Standardization of work products also addresses the need for

handover for post-deployment support, and avoiding contractor

lock-in.

Different interfaces might also be considered for

standardization including other kinds of data, invocation

26

interfaces, and external interfaces. Some level of

standardization for compatibility is needed. This is also

consistent with the DoD's statements to Congress on plans for

computer systems interface standardization.

2.2 General Issues

A number of issues are briefly discussed to set the stage

for the near-, mid-, and long-term as they recur throughout.

These include technical capabilities, technical risk, transition

between periods and approaches, cost, and means of development

and support.

2.2.1 Capabilities of SEES

Large variations in capabilities are possible among

entities all of which are labeled as software engineering

environments. In addition, capabilities will vary for a single

environment as enhancements are made to the environment over a

series of releases.

In discussing capabilities, this section concentrates on

the types of activities supported and the types of tools and

features that are in the SEE rather than the quality of the

resulting software development process for MCCR software.

Comparing what is included in different SEES along with their

maturity, performance and reliability (e.g., production quality

versus research quality) is more easily done and reveals most of

what is needed in this decision making context.

The spectrum of the life cycle covered by SEES varies,

although many today cover only the coding and testing phases.

Important considerations are whether the following are

supported:

0 word/document preparation as well as graphics
capability

o management tools and the ability to handle large
projects

27

" specific programming language for specific target
machine

" support of or compatibility with relevant DoD
standards

" application-oriented, methodology-oriented or
organization-specific capabilities

In addition, the sophistication of the human interface, the

commands available and the level of integration vary widely and

are important considerations for ease of use.

Other features of interest include the availability of the

SEE on different computers and operating sytems as well as its

conformance to relevant standards--e.g., Ada, CAIS.

Particularly in the long-term, the underlying technical basis

may be of interest, for example, whether it has an expert

systems or functional programming underpinning.

A spectrum of environment capabilities can exist and is a

key consideration in the decision making process.

2.2.2 Technical Risk

Of course, technical risk varies with the type of

capability or feature and its sophistication. It also increases

as the lifetime projected for an environment increases or the

level of integration attempted increases since the incorporation

of new, unanticipated technologies becomes more and more

uncertain. Lastly, risk exists in any SEE development effort;

proven environments involve less risk, although potentially

lower payoff.

Technical risk is not a simple issue. It can differ

significantly from one segment of an environment to another. It

generally is higher the more ambitious the effort. One must be

careful to avoid choosing an option with lower risk but with

even more significantly lower capability.

28

2.2.3 Transition and Evolution

Requiring projects or people to move from one environment

to another is a step that must be seriously considered.

Transition strategies and migration aids are generally

necessary. The requirement of at least one move from the

various current operating systems and tools in use to a new SEE

may be unavoidable for those who desire to take full advantage

of the new capabilities. Even in that situation, a good

transition strategy and good training will be very useful for

minimizing the change and disruption. Any plan for several

radical changes over the coming ten years and beyond will incur

substantial costs that must be weighed in decision making.

Evolutionary strategies, for example, the use of an

architecture designed to facilitate change, represent an

approach to easing transition. Another strategy is to encourage

upwards compatibility where the new environment subsumes the

old.

The ability to learn from the experience with the existing

environment in order to provide appropriate future enhancements

is a consideration. Ease of prototyping future enhancements is

an issue too, but less of a requirement since special prototyp-

ing efforts can be done if necessary.

The ease of movement and adaptation of new advances by

projects, organizations, and persons is important. If the

environments involved are largely incompatible and substantial

changes are required, the cost is significant. The adverse

impact of "change" must be traded-off against the advantages the

changes bring.

2.2.4 Costs

The desirability of leveraging industry or commercial

investment to reduce costs to STARS has already been discussed.

Three other issues related to cost are relevant. First, of

29

course, is the fact that more capabilities generally cost more

and cost and benefit both must be considered. Duplication of

effort or incompatibility caused by multiple implementations

need serious consideration and strong justification because the

additional cost can be significant. Second, true cost avoidance

will sometimes be possible by using or adapting existing

products--Ada compilers and MAPSEs are good possibilities.

Finally, payment or repayment schemes through royalties or other

arrangements can potentially relieve the government investment

burden and are probably a necessity if an active marketplace in

tools is to be created.

.2.2.5 means of Development and Support

Potentially a number of different types of organizations

could be involved in the SEE development and support, including:

" DoD Software Engineering Institute (SEI)

" Service Laboratories

" Defense systems contractors

o Defense software contractors

o Commercial software houses

" Computer manufacturers

" Small entrepreneurial specialty firms

" Universities.

The SEI is expected to be involved in a technology

insertion role although different programmatic and technical

choices could cause variations in that role. A spectrum of

development approaches is possible. A single environment as a

whole could be done in one place; it could be split up and

portions done at different places with an integration

organization (say, SEI); it could be done by a prime contractor

with substantial subcontracting; or it could at least in part be

allowed to grow organically with portions contributed by various

organizations. Multiple environments could be developed by

30

I
d

different organizations with competitive runoffs of

architecture, designs, prototypes, or even environments. It

should be noted that involvement of an organization in

development can aid in its acceptance and use of results. This

would be a side benefit resulting from this involvement.

One key issue for the means of development and support is

design control, i.e., whether the design, interfaces, and

changes will be under DoD control. In preparing the SEI

management plan, the issue of DoD design control was considered

very important and played a key role in the rationale for

establishing a Configuration Control Board over the SEI even

though the SEI would already have close coordination with DoD.

An important consideration is the extent to which design control

should be decentralized--e.g., control of interface standards

versus implementation details, or control of the environment

core versus methodology or application-oriented tool sets.

2.3 Near-Term

This section covers the near-term issues of DoD needs and

desires, possible approaches, possible performers, and

rescue/acceleration of efforts. Although many of these can also

be considered as issues for the mid-term and long-term, they are

particularly important issues in the near-term.

2.3.1 DoD Needs

Needs to be emphasized in the near term depend on the

overall multi-period strategy chosen and STARS programmatic

decisions. Greater or lesser emphasis could be placed on:

o Improving existing projects

o Getting new projects off to good starts

o Learning from experience

o Transitioning to future environment(s)

31

o Facilitating the introduction and use of Ada

o Showing results that will impress decision makers on

future funding.

In prior STARS plans, the last three points have been

emphasized.

2.3.2 Possible Near-Term Approaches

Numerous possibilities exist for near-term approaches and

are listed in Figure 2-1. For the moment, this list does not

consider who would perform the tasks. Many of the possible

approaches in Figure 2-1 could be done in single or multiple

implementations, or with competitive run-offs. The discussion

in this section follows the ordered topics in Figure 2-1.

The Army's ALS can be considered off-the-shelf if it indeed

makes its planned January 1985 date for a production-quality

release. However, it has had a history of problems and neither

the date nor the quality can be assumed. Nevertheless, it

potentially provides a minimal environment that could be

enhanced.

Several operating systems have or will shortly have Ada

compilers available for them--Data General, Digital's VAX/VMS

(TM), and some implementations of AT&T's UNIX (TM) or UNIX-look-

alikes are the prime examples. Some of these might be used as

the base. Interestingly, the Swedish effort at a near-term Ada

environment will start on VAX/VMS and is planned to also be made

available on UNIX.

32

I

Off-the-Shelf and Enhance/Adapt

ALS

Existing Operating Systems plus Ada

Existing Commercial Environments (Adapted plus Ada)

Development with Centrally Controlled Design

Common Core

Methodology-Oriented

Sponsor Development

Common Core

Methodology-Oriented

Application-Oriented

Organization-Oriented

Revise Policy

Business Practices

Specify Work Product Interfaces

And After Decision on Direction(s)

Early Availability of Some Mid-Term Tools

Usable Prototypes

Organize DoD Programs and Contractor IR&D to

Contribute

Specify Other Interfaces

Propagate CAIS Implementations

Figure 2-1: POSSIBLE NEAR TERM APPROACHES

33

UNIX, with the tools available for it, is on the boundary

between an operating system and an environment as the terms are

used in Figure 2-1. Using Mesa, XDE, UNIX or another modern

programming support environment as a starting point is a

possibility--one that becomes even more attractive if ALS does

not perform up to plans. Using much of the design of an

existing environment--such as Mesa or its possible successor

that is still in the R&D stage, Cedar--is also a possible way to

accelerate a near-term development.

The development of a near-term software engineering

environment (starting from an off-the-shelf basis) can

essentially be approached in three ways from the viewpoint of

design control:

o Centrally controlled design (e.g., a mini-JSSEE)

o Design controlled by developing organization (e.g.,

contractor in sponsoring commercial development)

o Specify interfaces (e.g., specify work product

interfaces).

The specification of work product interfaces, as discussed

earlier, has much merit and a consensus is emerging that work

product interfaces are the appropriate level to specify--as

reflected in the discussions at the Joint Logistics Commanders

Orlando I Conference in the Fall of 1983.

The common core of a SEE is a substantial portion often

including the underpinnings such as database management, human

interface, command processing, office automation, common

management tools,as well as most of the tools in the well

understood areas of code and test. When centrally controlled

design is discussed, it is usually in terms of this common core

plus some other interfaces (such as work products) outside the

code and test tools.

34

Methodology-oriented portions of a SEE, particularly

requirements and design methodologies, are areas with

substantial R&D activity and thus a variety of opinion about

appropriate choices exist. STARS has an effort already launched

by the Ada Joint Program Office and known familiarly as

"Methodman" to help guide this area over the next several years.

However, quite possibly, there will be no one "best" methodology

or allegiances to them within the Defense community will all

prove so strong that several requirements and design

methodologies will need to have supporting tools within the

SEE(s). Interestingly, the JSSEE planning team has made an

initial estimate that approximately three such methodologies

will eventually need to be supported.

In general, the issue of doing multiple versions of some

portion of environment(s) involves questions of:

" Risk, poorly understood or difficult to develop

" Different needs, such as different application areas

" Acceptance and use of environment

- Involvement of more organizations in development

- Strongly different desires that cannot be met by

tailoring

- Availability on different computers

" Compatibility, whether tools and database contexts

from one be used usefully with other tools from

another

o Cost.

If multiple efforts were launched today, there is little in

place to help ensure any compatibility. Even the CAIS

specifications planned for early 1985 will ensure little

compatibility (only transportability of tool sets and data).

Establishing the work product interfaces will provide necessary

minimal compatibility. more compatibility could be provided by

more interface specifications and a common architecture;

without compatibility among STARS-supported efforts they cannot

35

be cumulative. Thus, some delay in launching multiple efforts

while the infrastructure for inter-tool compatibility is put in

place could provide benefits in the future.

Revising business practices and establishing work product

interfaces are important considerations independent of the

option(s) with which they may be combined. It should be noted

that in addition to specifying or standardizing interfaces, the

capability to validate or certify conformance with them is

needed. The APSE Evaluation and Validation effort launched by

the Ada Joint Program Office has begun considering many of the

issues involved.

Once SEE directions are established, if an effort is

launched for the mid-term (or even the long-term), the early

availability of some tools or partial prototypes that can be

easily made usable, is a possibility. The tool efforts of

various DoD MCCR system programs and contractor IR&D efforts can

also potentially be organized so that their results are

compatible and non-duplicative. In addition, if a commitment is

made to CAIS or other similar standards, support for their

propagation may be worthwhile.

2.3.3 Task Performers

A key issue that must be considered in the near-term is who

will carry out the SEE development task, for whatever set of

technical options chosen. This is particularly important if

STARS supports efforts without significant DOD design control.

Quality organizations and appropriately skilled personnel are

essential to developing the advanced software that the SEE would

comprise. In fact, the recent experience with the DOD's MAPSE

contracts points out the substantial care that must be exercised

in such acquisitions.

Expertise needed for different portions of a SEE vary and a

range of specialists is required in addition to key system

36

designers. These various areas of expertise are probably not

obtainable totally today from one organization. Application-

and organization-oriented aspects seem to particularly require

the special knowledge of organizations that perform in a given

application area or whose peculiar organizational practices are

being supported. However, contractor-subcontractor team(s) or

consortia could be formed to collectively bring together the

needed expertise. On the other hand, DoD could chose to divide

up the work appropriately and have separate organizations carry

out different portions. For compatibility, this would require

prior interface establishment and final integration efforts--

roles envisioned in some planning as being done by the SEI (and

its precursors). In any case, the appropriate high quality

expertise must be brought to bear on the various portions as

well as on the overall design and interfaces.

2.3.4 Effort Rescue/Acceleration

In the near-term an additional problem that may arise is

STARS becoming the "rescuer" of some product that was to form

part of a firm base for SEE efforts. Among the possibilities

are ALS, CAIS, and even some Ada compiler effort to which one

might commit without prior adequate evaluation to insure its

suitability or performance. Of course, STARS plans should avoid

such opportunities for inverse leverage--spending funds on tasks

that would otherwise have been supported by the Services or

industry.

2.3.5 Summary

Thus, as one would expect, many near-term issues are
general issues, such as design control, technical approaches,

task performers, and budget. The near-term has a special
problem in deciding the bases from which to start, particularly

in off-the-shelf capabilities. Of course, near-term decisions

37

will depend in part on plans for the mid- and long-term whose

issues will be discussed in the next two sections.

2.4 Kid-Term

many of the issues related to efforts providing

capabilities in the mid-term are similar to those discussed

under near-term. In this section, we will try to point out what

is different about the mid-term. In addition, potential

transition issues exist concerning the transition from near-term

to mid-term, and mid-term to long-term.

2.4.1 DoD Needs

During the mid-term (4-10 years), the expectations for

STARS SEE(s) are naturally greater than for the near-term

efforts. They include support for the entire life cycle, a high

level of integration, support for DoD standards, and the ability

to add support at reasonable cost for programming languages

needed for post-deployment support of existing systems. In

addition, in order to readily make emerging artificial
intelligence based tools available in the environment, it should

support Common LISP, the new DARPA "standard". Late in the mid-

term need will also exist for integration with hardware and

systems oriented support tools.

2.4.2 Mid-Term Possibilities

In the mid-term, it is considerably more difficult to

project in concrete detail the possibilities that would be

available. The capabilities either can be provided on the base
of capabilities emerging from the near-term or as a separate

effort. During the three years of the near-term, it would be

difficult to analyze, design, construct and deliver a SEE from
first principles incorporating the best of previous work. In

38

I
I

the mid-term, an opportunity exists to do the job right,

including explorations of and experimentations on key points of

technical risk before design commitment. The substantially

greater capabilities expected in the mid-term, of course, imply

substantially larger development efforts.

Figure 2-2 lists the topics to be discussed in this

section.

o Layered development

o Timing and Releases

o Design Control

o Organize other fund sources

o Marketplace

Figure 2-2: Some Mid-Term Aspects of Possibilities

If different portions of the environment are to be

constructed by different organizations, then standard

workproduct interfaces could also help provide some interfaces

among the portions of the environment. However, when one

considers the special expertise needed for various portions and

especially the number of warranted versions in these portions

(e.g., different application areas), then other interfaces

become important as well.

In Figure 1-1, some layers were suggested in the previously

proposed application-oriented approach. Figure 2-3 revises that

diagram slightly and incorporates other aspects to show various

portions that might be developed by separate organizations. The

top three "layers" all would have multiple implementations aimed

at supporting different projects, organizations, and application

areas. The project- and organization-dependent portions should

39

Project-Dependent

Organization-Dependent

Application-Dependent

Methodology-Dependent: Technical and

Management

Common Core: (Database Management, Human

Interface Management, Office Automation,

Configuration Management, Tool Building

Tool Set, etc.)

Virtual OS Environment: e.g. CAIS Virtual

Operating System

Figure 2-3: Some "Layersw for Possible Separate Development

40

!

be funded and controlled by the specific projects and

organizations. They potentially would need to know the

interfaces to the layers beneath, but certainly at least the

common core level. The application-dependent layer would also

have a number of different application areas, many of which

could be developed somewhat separately. Application-oriented

reusable software and tool sets would receive funding from

STARS. In addition, a number of DoD organizations could

reasonably be expected to want to support application-oriented

efforts and would need to know the interface for the lower

layers.

A dependence that cuts somewhat across organization,

application, and project (although strongly related) is target

computer dependence. STARS probably would fund at most one

target-dependent tool set and that would only be if needed for

demonstration of common integration/debugging capabilities in

the SEE.

Several methodologies might have supporting tool sets

developed by different organizations, either funded by STARS or

by organizations with strong allegiance to particular

methodologies.

The bottom layer is expected to have a number of

implementations. This would certainly be the case if the CAIS

virtual operating system approach were taken. Under certain

scenarios, STARS would fund a few of these implementations for
SEE development purposes. One example is to make SEE(s)

available on workstations in a distributed environment.

The common core is the only portion in which it is

reasonable to expect that a single implementation could suffice.

(Risk or other reasons might justify some multiple

implementation of subportions). Subportions of the common core

could potentially be done separately if interfaces are

established. In addition, the interfaces to the common services

provided by this layer need to be known to the implementors of
the layers above.

41I

All these requirements for having known, established

interfaces in the common core imply that efforts should be made

to establish these interfaces early. Along these lines, the

desire to avoid the costs of multiple implementations of the

common core, caused the Services to recommend in 1983 that the

application-dependent layer and common core not be bundled

together. They recommended that the application layer be

delayed until the common core layer effort had proceeded

somewhat.

Thus, a number of opportunities exist to build portions of

an environment separately, but this implies the need to specify

interfaces at an early stage. In addition, a logical (partial)

order exists in which to define the interfaces.

The other key issue that this discussion of layers and

multiple implementations addresses is cost. The common core,

even with maximum reuse of MAPSE efforts (and Navy extensions)

probably has a development cost of $40-$100 million. Even with

the low end estimate, multiple implementations would be

difficult, given the projected STARS budget.

During the mid-term period, capabilities should be made

available incrementally over a series of releases. If STARS has

a lifetime of seven years, as currently envisioned, any

capability should be available by year seven to be within the

"STARS lifetime". On the other hand, a "do it right" effort

probably cannot field much of an integrated release before year

three or four.

When one uses the available software cost and schedule

estimating models (as the JSSEE effort has), it soon becomes

clear that to meet this window, significant parallelism is

required. Even so, it is unrealistic to think that all parts of

all layers could be developed by the end of this window. This

reinforces the need for early definition of interfaces, and

product evolution and extensibility.

42

!

The degree of design control is also an issue in the mid-

term. As one goes upwards from the common core, design control

becomes less and less of an issue. However, if multiple

organizations are involved, the availability and stability of

common core interfaces are very important.

In the mid-term, after key interfaces are established,

other organizations besides STARS can invest with some hope of

compatibility. DoD programs and Defense contractor IR&D could

leverage the STARS investment. Undesired duplication in such

efforts would be decreased by an information campaign combined

with clearinghouse functions disseminating information on such

efforts. Investment from commercial sources could also be

encouraged in the hQpe that an active marketplace would be

created in compatible tools.

2.4.3 Previously Proposed Alternatives

Previously proposed alternatives related to the mid-term
include:

o Joint Service Software Engineering Environment

o Industrial Consortium

o Sponsoring Commercial Development

o Application-Oriented.

Industrial Consortium is really a means (like Service

Laboratories) and does not currently imply an explicit technical

choice.

Sponsoring Commercial Development and Application-Oriented

are essentially near- or mid-term strategies. Off-the-shelf

(including ALS) alternatives could be precursors to these or

other mid-term alternatives.

Two key cost considerations influence mid-term choices--how

much duplication of effort (in lower levels of Figure 2-3)

should DoD fund and how much investment from other sources can

43

II

be encouraged/achieved. JSSEE might encourage substantial non-
STARS or non-DoD investment through standardized interfaces and

proper encouragement. However, Sponsoring Commercial
Development and Application-Oriented clearly, more directly

motivate the contractors involved to invest funds of their own.

Industry investment, early insertion into sponsored

organizations, and greater contact with real-world contractor

requirements are pluses for Sponsoring Commercial Development

and Application-oriented but are hard to quantify.

Application-oriented could build on top of a JSSEE effort

supplying only the application-dependent layer. So two separate

issues exist -- general approach, JSSEE versus Sponsored

Commercial Development, and inclusion of application-oriented

aspects.

2.4.4 Summary

The mid-term is the first period in which a "do it right"

environment could have a full range of capabilities available.

The possibilities for separately constructing portions of the

environment(s) is illuminated by a "layered" model that

separates dependencies on project, organization, application

area, methodology, and the underlying computing system. The
importance of common core interfaces makes it critical to

establish them before higher layers are attempted. In addition,
the cost of the common core will be large enough to probably

make it impractical to do multiple versions unless significant

non-STARS investment can be attracted to do this. Such

investment, however, could alternately be encouraged in the

other layers with less of an issue of duplication.

2.5 Long-Term

In the long term all alternatives have the issues of

compatibility on cost of conversion of SEE(s) to radically

44

!

different paradigms. Adequate extensibility of the mid-term

environment(s) or upward compatibility in new long-term
environments(s) would be very desirable. However, compatibility

at the workproduct interface level that allowed translation of

the relevant subset of work products is the minimal requirement.

To achieve radical long-term capabilities, significant R&D

and prototyping will, of course, be required in earlier periods.

STARS plans have included doing some of this-- particularly

prototyping.

While the long-term is difficult to see clearly, some

likely technologies can be identified today. These include

o Logic programming

o Expert systems

o Functional Programming

o Transformational programming

o High-level end-user "programming".

For many of these it should be possible to address the

extensibility/compatibility issue in definition and design of a

mid-term environment.

Thus, the long-term is of interest mainly in terms of

transition and R&D concerns.

45I 4
b

3. Recommendations for STARS Decision Making

This chapter outlines an exploration and decision process
that is recommended for the STARS program to follow over the

next year. The recommendations contain a number of possible

activities related to the decision making process, and it is not

expected that the SJPO (STARS Joint Program Office) should

necessarily perform all of them.

The recommendations are discussed in a sequence that starts

with conclusions that do not depend on the choices made,

discusses goals, decisions on general approaches, then the
decisions on near- and mid-terms. Where potentially obtainable

information is lacking, actions are suggested for obtaining it.

And finally, general suggestions are made on obtaining good
decisions.

The one conclusion that stands out the most firmly from the
review of key issues is the importance of early establishment of
workproduct interfaces. Regardless of the other decisions made,

the workproduct interfaces will play a significant role for some

time, and they must be of high quality and extensible. The

STARS Program should pursue them vigorously.

Recommendation 1: Pursue vigorously the
specification of workproduct interfaces
and their standardization.

The decision process for other aspects that are not so firm
should start with a review of goals by STARS top management.

These should be covered in the sequence of long-term, mid-term,

and finally near-term. The general relative importance of the

various goals in the different periods should be established.

This review of goals, of course, relates to STARS overall

programmatic goals. Its main purposes are to make sure that any

impact of future goals is reflected back to earlier periods and

that the relative importance of goals is seriously considered.

46

In the near-term, relative emphasis is especially important

to establish. As mentioned in Chapter 2, greater or lesser

emphasis could be placed on

" Improving existing projects

" Getting new projects off to good starts

" Learning from experience

" Transitioning to future environment(s)

" Facilitating the introduction and use of Ada

" Showing results that will impress decision makers

on future funding.

Examples of activities to emphasize include development of the

near-term capability needed primarily as a demonstration to

affect funding, a set of capabilities for particular Defense

programs, or a transition step toward mid-term capabilities.

Figure 3-1 might stimulate some thoughts in this area. It

is a list of goals and objectives in priority order established

by National Security Industry Association (NSIA) Working Group,

and suggested to the JSSEE effort. Many of the points derive

from the appendix on goals in the initial JSSEE plan (12). It

is interesting to note that this prioritization is probably

significantly different from one that would be produced by DoD.

of course, any such simple ordering cannot adequately reflect

the complex interrelationships among the goals and objectives.

Recommendation 2: Establish a STARS top
management understanding of possible goals
and their importance in the long-, mid-,
and near-terms.

47

Figure 3-1: NSIA WORKING GROUP PRIORITIZATION OF JSSEE GOALS
(5 June 1984)

1. Develop a common integrated SEE adaptable to Service and

Project specific environments and methodologies.

2. Production quality SEE by mid FY88

3. Show an improvement in software productivity (at least a
factor of 2 by 1990)

*4. Provide evaluation of JSSEE prototype SEE by mid FY86.

5. Identify standard information content interfaces for
baselined products in database.

6. Provide an integrated set of tools to support at least one
software development methodology.

7. Make JSSEE portable to multiple host computers.

8. Support the use of the new JLC standards (MIL-STD-SDS)

9. Gain wide acceptance of industry and academia.
*10. Provide for evaluation and feedback of early use for

subsequent baselines.

11. Support CAIS.
*12. Support Program and Project management.

*13. Provide training tools.

14. Develop an architecture for the JSSEE and a method for
evolution.

*15. Base the JSSEE on a single Service MAPSE.

16. Provide a means to incorporate technological advances.
*17. Support current Service system development practices

(languages).
*18. Exploit distributed architecture/networking.

19. Provide standard user interface.

20. Transfer to SEI.
*21. Provide multi-level security.

*indicates a new goal or an item listed as a design issue in
(12).

48

i

I
Next, a preliminary decision should be made on the overall

approach, primarily from a SEE capability viewpoint. This

should address such overall issues as:

o Amount of capability desired and in what

timeframe

o Number of different thrusts involved

o Amount of parallelism

o Level of continuity

o Rough level of effort involved over time

o Relationships to current efforts

o Decisions that can/should be delayed.

The rough levels of effort implied by different

arrangements of capabilities and thrusts over the years in the

STARS lifetime then must be compared with estimates of

reasonableness. However, efforts should not be entirely removed

from future consideration unless there appears to be no hope of

obtaining funds from any source.

A firm decision on one set of efforts structured in a

certain way over time is not necessary at this point in the

decision process, but the possibilities should have been

considered and narrowed to only a few.

Recommendation 3: An (or at most a few)
overall approach(es) in terms of capabi-
lities and technical efforts structured
over time should be established before
considering the near- and mid-terms
separately.

In the near-term, the exact capabilities and approaches

will depend on the relative importance given the various goals.

However, the issue of the basis or bases from which to start

49

A

must be decided. Currently, one particular, important piece of

data is missing--ALS performance and quality. A systematic

assessment of other possible bases is also missing, although

relatively recent assessments exist that could form a beginning

for such an assessment.

Recommendation 4: ALS quality, perfor-
mance and suitability as a basis for
enhancement with near-term capabilities
should be evaluated as soon as possible.

The first production quality release of the ALS is

scheduled for January 1985. While visibility into its condition

can be obtained before then, it is probably unfair (and

dangerous) to reach any final conclusion before then.

The STARS program must be prepared in case the evaluation

of ALS reaches a negative conclusion on its suitability. This

need, coupled with the need to explore the possibility of

multiple bases that could include the near-term capabilities and

to gather information useful for mid-term efforts leads to

Recommendation 5.

Recommendation 5: A systematic assess-
ment of off-the-shelf alternatives that
might form bases for enhancement should
be performed such that results are avail-
able when a conclusion is reached in the
ALS evaluation.

It should also be noted that the use of multiple bases

reduces the risk of subsequent discovery of serious problems

with any one of them. ALS could, therefore, be included in such

a set, even if it were not initially entirely suitable.

Recommendation 6: Consider combination
strategies that do not create total
dependence on any one high-risk element/
implementation.

50

This is also useful advice for the mid-term (and, of course

long-term). Once the near-term is laid out, then the mid-term

* efforts should be structured in more detail.

The near- and mid-term efforts should be reviewed forI*possible double-duty tasks that could combine tasks common to
both to provide near-term capabilities and to contribute to mid-

term efforts. Prototyping and early availability of mid-term

tools are areas to look for possibilities.

Recommendation 7: Consider tasks that can
both provide near-term capability and con-
tribute toward mid-term capabilities.

Once technical efforts are sketched out for the near-and

mid-terms, decisions must be made on task performers and

acquisition strategy. The process of making these decisions

will undoubtly cause some iterations through earlier more

technically-oriented decisions.

The issues involving task performers, organizational

involvement, leveraging funds, need for quality, etc. have been

discussed at length. Decisions will depend on a larger number

of factors. However, some general recommendations can be made.

Recommendation 8: Avoid becoming overly
dependent for success on any one organi-
zation.

Recommendation 9: Involve all three
Services, DOD agencies and a number
of Laboratories and industrial firms.

Recommendation 10: Obtain quality
expertise in all the necessary areas
for each task.

51

Recommendation 11: Insure that con-
tinuous visibility and incentives exist
and that milestones are frequent enough
to allow for recovery.

Recommendation 12: Emphasize compati-
bility among mid-term efforts.

Recommendation 13: Strive for leverage
and encourage the development of a mar-
ketplace in compatible tools.

This last recommendation needs considerable early activity

to establish the true potential for leverage in industry. The

few inquiries made as part of investigating the Sponsoring

Commercial Development previously proposed alternative were not

encouraging, but DoD needs to collect harder data on industrial

readiness to participate with the Government in this area.

Currently, it appears that inquires should come directly from

DoD and that site visits will be needed to understand and verify

the information. In addition, specific definition of the

possible capabilities in future SEEs are needed to insure that

all have a common understanding about the same capabilities.

Recommendation 14: Collect firm, verified
information on industrial readiness and
potential for leverage before making final
decisions on acquisition approaches.

Finally, three general recommendations are made on the

decision process itself.

52

Recommendation 15: Prepare a schedule
for the needed decisions and insure that
information generation or collection
and staff work is done before decision
point.

Recommendation 16: Avoid making final
commitments sooner than necessary.

For example, final commitment on mid-term acquisition

strategy can probably be delayed at least until the first set of

workproduct interfaces is specified, i.e. probably late 1985.

Recommendation 17: Take advantage of all
of the existing knowledge in this area since a number
of organizations have been active, and can make useful
contributions to the decisions.

Recommendation 18: Recognize that SEEs are complex
objects containing a number of potential portions or
features with varying maturity, technical risks,
ranges of possible sophistication, dependencies, cost,
and benefits and that these portions and features may
require varying treatment.

53

APPENDIX

..... _ _

I
Appendix

1. The Joint Service Software Engineering Environment

An effort to define and begin design for a Joint Service

Software Engineering Environment (JSSEE) has been launched by

STARS under a tri-Service team with Navy leadership. An initial

plan and a draft operational concept document with high level

user requirements have been prepared.

This section provides a description of the technology to be

incorporated in the JSSEE, clarifies objections to the JSSEE

approach and raises a number of related issues (such as the

short-term delivery of APSE capabilities by augmenting a

Government-sponsored environment such as the Army ALS, Navy

ALS/N, or Air Force AIE (Ada Integrated Environment).

1.1 Description of Approach

To implement the JSSEE, an architecture and important

interfaces must be established (see section 6.3 for rationale on

interfaces), building an environment over a series of releases

in FY 88 through FY 90. The environment would be built on top

of the Common APSE Interface Set (CAIS) virtual operating system

and utilize previous DoD MAPSE efforts.

The approach is tied to a family of development

methodologies based on a conviction that software systems can

best be built by following a disciplined approach that focuses

attention on successive phases of the software life cycle. Most

recently, this approach has been defined in several life cycle

methodologies and formalized by the DoD-STD-SDS, a tri-Service

software development standard currently being reviewed within

the Department of Defense software community.

A-1

While approaches vary, each of these methodologies

specifies that the details of a system's requirements should be
developed initially, followed by a preliminary design and then

a detailed design. These activities precede the

implementation of the software and its integration into the
system in which it is a component. The JSSEE approach is to

develop a software engineering environment by following a life
cycle-oriented methodology such as the methodology defined in

DOD-STD-SDS.

A major issue is how common the resulting environment is
with respect to the community as a whole. Even if the

environment is viewed as universal, it will be necessary to

augment it with organization-, project-, and application-

oriented tools to increase its utility for any specific
project. To the extent that the practices of any given

organization are unique to that organization, then it may be
necessary to view the common environment as just a basic set of

tools to which organization-specific tools have been added.

From a "core" it would be possible to create an environment
common to all projects within an organization. Figure A-1 shows

the commonality of tools based on an organizational hierarchy.

The-~environment development project includes the basic tools

and, in addition, some of the tools from the other layers. The

other tools to be produced are common to some but not

necessarily all of the organizations, projects and applications

within the DoD.

A- 2

APPLICATION-SPECIFIC TOOLS: technical and managerial
tools specific to particular application areas

PROJECT-SPECIFIC TOOLS: technical and managerial'
tools specific to particular methods or management
styles

ORGANIZATION-SPECIFIC TOOLS: technical and managerial
tools specific to the practices and policies of
specific organizations

BASIC TOOLS: technical and managerial tools that are
of utility over all organizations, projects and
application areas

Figure A-1. An Environment Organization that Emphasizes
Tool Commonality

A- 3

The approach being discussed here is, therefore, to first

define the requirements for the environment that reflect a wide-

degree of applicability over DoD organizations, projects and

applications, in order to develop preliminary and detailed

designs. The environment would then be implemented, tested and

delivered to DOD organizations.

1.2 Objections and Responses

Objections to this approach have come from general concern
over the use of a top-down approach for the development of

large-scale software systems destined to be used in new and not
fully predictable ways. Some stated objections to the JSSEE

approach include the following:

-- the requirements cannot be fully defined at the beginning

-- too long a period of time will pass before a usable
capability is achieved

it will be difficult to extend the system, in the future,
to meet new requirements

the JSSEE will be too costly

it will not be easy to transport the environment to new
host machines or new development situations

the capabilities will be either in conflict with the
special needs of specific organizations, projects, or
application areas or they will not be an adequate basis for
augmentation to meet these needs

For the large part, these objections stem from a concern

that fixing the requirements at the beginning will create

an inflexible system that cannot be easily extended. And to a

large degree, this concern, and therefore the objections that

stem from it, can be addressed by careful planning that attends

to the issues of flexibility and extensibility. This planning

A-4

and the technical issues that affect it are discussed in the
following section.

1.2.1 Planning and Prototyping

The development of a flexible, extensible environment

requires careful preparation for maturing the environment in
the future. This, in turn, requires a system structure that can

accommodate changing demands while still providing a high degree
of coherency for the tools in the environment. This planning

and the associated technical problems of prototyping and
environment integration are discussed in this section.

1.2.2 Planning for Change

The central idea in planning for change is to identify the
various changes that might occur and plan for handling them. We

cannot hope to determine all of the potential changes. But a

natural by-product of determining system requirements is a list

of additional features that could be present but which have been

rejected for the version under consideration. Such a list is a
starting paint for a more complete accounting of the changes

that could occur in the future.

This accounting can be facilitated by developing prototypes

of the system and letting the prototype users provide feedback

on the system's requirements. This is an effective procedure

for determining the set of compatible, necessary features to

provide in the initial version. it can also be used to make a

more complete accounting of potential future changes.

Accounting for potential change is less than half the

problem. To actually respond to change requests in the future

requires a system architecture that accommodates change and a

solid basis for tools so they remain a coherent set even under

change. These two technical problems are discussed in the next

sections.

A- 5

1.2.3 Prototyping

Prototyping is a way of determining whether a system's

requirements are complete and consistent, but it can also be

used to solve design problems such as developing a flexible

architecture that can allow efficient change. Flexible

architectures for software engineering environments have

received little direct attention. In addition, it is unlikely

that a flexible architecture for one situation will be

sufficient without at least minor modifications for other

situations. Prototyping for the purpose of investigating

architectural issues provides the opportunity to empirically

develop a flexible architecture tuned to the system's potential

future changes.

1.2.4 Environment Integration

An environment is integrated to the extent that the tools

provide a coherent collection. A very strong degree of

integration can be achieved by having the environment support a

specific development or in-service support methodology -- the

methodology provides a degree of relatedness that makes all of

the tools fit together coherently.

New tools or capabilities added to create subsequent

versions will rather naturally integrate into the existing

set of tools if they support the methodology on which the

environment focuses. It is likely, however, that the

integration will be lessened as the tool collection grows since

new tools will tend to broaden the set of methodologies that the

environment supports.

There are other bases for integration and these can be used

in developing an environment so that future extensions will

not destroy coherency. One other possible basis for integration

is to define a small, coherent set of tool interfaces --new

tools can then be integrated into the existing set by having

them fit with respect to the defined tool interfaces. A

A-6

perhaps better basis is to have all of the tools utilize a

common set of concepts -- for example, an Ada-oriented

environment could have all of its tools be based on the idea
of communicating sequential processes.

By picking one of these other bases for integration,
particularly the set of interfaces, the issue of methodology
support and coherency with respect to a methodology is not
ignored. Rather, the approach chosen is the primary basis for

integration and the coherency of the tools with respect to a
methodology is attacked separately and secondarily. This

creates a situation in which future expansion of the collection
of tools will result in a new collection that is still
integrated to some degree even though the new set may support an

expanded set of methodologies.

1.3 Issues in Considering this Approach

The JSSEE team has prepared a plan that fits the overall

STARS funding availability -- roughly $120 million for

development of the SEE with some funding included from SEI to
perform its role of integration, test, and release.

Even though it is feasible to use this approach to
develop an advanced software engineering environment, this
does not mean it is always desirable. Some of the issues and

concerns that must be considered when balancing this approach
with other alternatives are:

Need for Immediate Capability. This approach tends to
lengthen the time until a usable capability can be achieved.

Even though a side-effect of the use of prototyping could be the
early emergence of a usable capability, it may still take

longer to get a production-quality, usable capability.

Tool Interoperability. By driving the development from
methodological or tool integration concerns, the result may not

A-7

necessarily easily accommodate tools that have been developed

for other methodologies or for other approaches to integration.

Level of Comonality. While this approach can be used for

a number of different levels of commonality, there may be

better approaches especially if the level of commonality is low
(that is, just the base level in Figure A-1) or high (that is,

most of the higher levels in Figure A-1).

Technical Feasibility. With this approach, it is possible

to specify an environment that cannot be built because of a

lack of solutions to the technical problems that may arise.

When heading towards a "traditional" environment that
supports a "traditional" methodology for developing systems in

well-known application areas, the probability of technical

infeasibility is low. If there is a lack of experience or a

high degree of uncertainty, however, this approach may not be a

good one.

1. 4 Summary

The JSSEE offers a long term approach to environments.

However, a complete or "goal" JSSEE is not needed in order to

have usable capabilities. A mid-term compromise might be the

delivery of an augmented APSE such as ALS as a "core" JSSEE.

Although the JSSEE builds on existing technology, it is
ultimately a high risk development. Its orientation toward Ada,

planned incorporation of life cycle management capabilities and

complex use of information interfaces increase the likelihood of

development problems. The JSSEE is in essence a revolutionary

approach. Futhermore, the JSSEE is a "from scratch" design; the

current operational concept document being only the first step

in setting its requirements.

The JSSEE is a Government-funded and Government-owned

approach that offers a choice of implementors ranging from

A-8

U

competitively selected contractors to the SEI. Regardless of

the implementor, the DoD will certainly contract to procure the

JSSEE in much the same fashion as Ada and APSE's. Current

projections are that at least two Services will GFE APSE/JSSEE

to software developers.

The SEI and Services are being tasked with the maintenance

and configuration management of the JSSEE. The current team-

based design effort and the likelihood of transitioning the

JSSEE to the SEI means that the whole effort from requirements

definition to distribution will be centrally managed.

2. Service Laboratories

The role and capabilities of the Service Laboratories in

the software development process have been studied intensively

in recent years (see, e.g., (4))--most recently by the the

Software Engineering Institute Study Panel (3). The Service

Laboratory alternative is defined here as increased support to

existing DoD Laboratories to provide funds to continue and speed

the development of suitable software engineering environments.

2.1 Description of Approach

There are two modes in which existing DoD Laboratories

could utilize increased support and resources to develop or aid

in the development of advanced software engineering

environments: the Laboratories could operate independently or

they could cooperate along intra-Service or inter-Service

boundaries. Intra-Service cooperation builds on the commonality

of the existing procedures, regulations and acquisition

practices within the Services. Inter-Service cooperation, on

the other hand, while building on DoD-wide commonalities, such

as the upcoming DOD-STD-SDS, might also be motivated by more

varied concerns (e.g., the desire to cooperate on tri-Service

initiatives or the common demands of such applications as

A-9

avionics, battle management or electronic warfare). Whatever

the details of Laboratory organization and response, a number of

factors need to be defined in order for the alternative to be

workable. These factors include the following:

-- Research: Who will perform basic and applied

research, carry out experiments, identify new

technologies and conduct education and training?

-- Development and Support: Who will produce risk

assessments, demonstrate the utility of new

technologies, qualify tools and environments for

military use, engage in advanced development and

"productization" of environments, and oversee the

maintenance and evolution of standard environments?

-- Communication and Distribution: who will oversee the

distribution of environments and services to users,.

maintain the computers and other physical resources

and facilities, and manage the (possibly several) user

communities.

While each Laboratory and Service is likely to adopt its

own style in defining these basic operational parameters, it is

useful to look briefly at a simplified but concrete example of

how this option might be organized.

The Navy Material Command has adopted (5) the following

model. In the Navy view the Laboratories operate in concert

with top management of the Joint Logistics Commanders (this does

not necessarily mean that individual Laboratories must cooperate

and cannot operate independently -- it does mean that their

ope"ration should be coordinated). (See Figure A-2 for the

partition of functions and responsibilities for the Navy

Laboratories.)

A-10

!

Function Staffed or Managed by:

Industry University Laboratory

--

Research x

Dev/Supp x

Comm/Distr X

S/W Devel. X

Figure A-2 Distribution of Laboratory Functions

The major concepts in the model include the following. The

developers of DoD software play a key role in this structure.

By actual acquisition (e.g., GFE on contracts) or by remote

access, the Laboratories utilize networks, mainframe computers

and contracting mechanisms to distribute their environment to

the MCCR software developers. The Laboratories also play a key

role in the productization of new technologies. Not only do

they qualify and demonstrate new technology, but they gather

usage reports, problem reports and maintain both the environment

and its documentation as well. The research function is assumed

A-lI

almost entirely by external organizations such as universities

(either through direct tasking or through funds directed to

Service research offices).

It should be noted also that the Navy model of environment

development is consistent with the establishment of a Software

Engineering Institute (3). Many of the research and several of

the development and support functions can be delegated to the

SEI, (or its functional equivalent), while the Service

Laboratory can keep the distribution and qualification functions

that are closest to the developers' activities.

2.2 Objections and Responses

Several objections to the expansion of Laboratory roles

have been raised. A creative approach to Laboratory management

can overcome many of these objectives.

DoD Laboratories already have the charters, although not

necessarily the funding, to carry out the work necessary to

develop and implement software engineering environments. All

MCCR computer programs operate in some type of environment, even

if that environment consists of only an operating system. DoD

Laboratories have been involved in the production and

enhancement of some of these environments, for example the

SHARE/7 operating system. A success that more closely resembles

a software engineering environment as defined in this report is

FASP (Facility for Automated Software Production), developed by

the Naval Air Development Center (NADC) in the mid-to late-

1970's (6). In general, however, the Laboratories have not

provided programs with advanced, modern software engineering

environments and a large scale effort by the Laboratories in

this area does not appear to be forthcoming.

A- 12

2.2.2 Limited resources Laboratory budgets are very

constraining. The costs associated with developing and

maintaining a new environment rise quickly beyond the costs of

design and implementation. Maintenance, training and

distribution costs can quickly dominate all other activities.
Particularly for organizations that view their missions as

support of Service R&D activities, this burden is too great to
sustain itself for very long.

The issue of limited resources can be addressed by a
cooperative effort among Laboratories. A partitioning of

functions such as that envisaged by the Navy (see above)

together with a pooling of capital resources (e.g., the

construction of a broad-band computer network for Service-wide

distribution of resources) can in fact leverage a comparatively

small investment on the part of each Laboratory. That is,

massive investments in duplicate resources can be avoided.

2.2.3 Personnel limitations The identification and imple-

mentation of high quality software engineering technology to

integrate into a new environment requires highly skilled

personnel. DOD Laboratories compete for this labor pool, but

industry typically offers higher salaries. It is, therefore

unlikely that an effective design and implementation team can be

assembled in a DOD Laboratory without contractor support.

Personnel limitations can be overcome by cooperative efforts

between Service Laboratories and by using contractors.

2.2.4 Resource duplication Without extensive coordination

between Laboratories, the duplication in resources engendered by

this alternative would be prohibitively expensive. In hardware

costs alone, the NADC efforts have accrued millions of dollars

in capital equipment expenditures. Even if only half of the

existing Laboratories required large mainframe computer support

on the scale adopted by NADO, the cost in new equipment to the

Government could be as high as $200 million. When the cost of

A- 13

development is added in, resource duplication could push the

incremental cost of designing and developing a set of new

environments to well over $1 billion. Assuming that 70% of the

life cycle costs of the environments are in maintenance and

support, the total cost of this approach could be as high as $3

billion.

2.2.5 Laboratory biases The essence of this objection is

that Service Laboratories, rather than being part of the

solution, are part of the problem. It has been said that in

their roles as chief scientific centers of their respective

Services, they have advocated and perpetuated outmoded and

ineffective approaches to software engineering. The goal of

increasing the production of higher quality software cannot be

achieved until this cycle is broken.

2.2.6 The effort does not fit the Laboratory role

Despite the charter of DoD Laboratories, some claim the

basic work of designing and implementing a new software

engineering environment does not fit into the role of a

Laboratory that was invented to deal with physical and system-

level engineering problems. However, the Laboratories have the

advantage of flexibility that is difficult to obtain in

commercial settings. As one example, consider the relative

ease with which the top management of a DoD.Laboratory can staff

in response to a given task. If the functional equivalent of

the SEI is also assumed then there is considerably more

responsiveness in the Laboratory hierarchy than there typically

is in the commercial sector (which is bound by the inertia of

market demands).

2.3 Summary

The approach of allowing DoD Laboratories to carry out the

bulk of the work in developing the environments that are needed

for the next generation of military systems is probably not

A-14

It

feasible without significant contractor support. However, DoD

Laboratories have played and will continue to play an essential

role in environment development.

Time: DoD Laboratories can adapt to whatever time scales

are appropriate. In responding to near-term and mid-term solu-

tions, Laboratories may in fact be the favored option.

Technical Risk: Due to personnel and budgetary

restrictions, Service Laboratories are most likely to adopt

incremental, evolutionary approaches. Thus the Laboratory

developments will tend to be of relatively lower risk.

Design Methods: Existing technologies--unless they have

been tailored to the needs of the Laboratory are not likely to

be adopted without considerable re-engineering. The approaches

most commonly adopted by the Laboratories are therefore likely

to be top-down.

Funding: The source of funds for the Laboratories is the

Service budget. Within the Laboratory, support for such

developments could be drawn from a mixture of IR&D and program

funds.

Implementors: The technical staff of the Laboratories

should carry out a great deal of the work although--in practice-

-support contractors and consultants will be tasked as needed.

Ownership: All rights to Laboratory-developed environments

reside with the Government.

Business Model: This option involves no commercial

activities beyond the contracting necessary to carry out

predefined tasks and is therefore a Government business model.

MCCR Acquisition Strategy: MCCR projects using

environments developed under the Laboratory alternative could

acquire the environment as GFE or supplied from the Government

on a "use at your own risk" basis.

jA-15

!

Maintainer: The intention is that the support capabilities
of the Laboratory will be applied to the environment. In some
cases life cycle support contractors may be acquired.

Management: The relative autonomy of the individual Labor-
atories makes a distributed management of their efforts the only
feasible approach. In some instances, the Laboratories may
choose to cooperate and pool resources.

3. Off-the-Shelf Alternative

Some argue (see e.g., (7)) that in order to supply the DOD

with the software development/engineering environments to

satisfy planned requirements, those requirements must be levied

on the design of the environment itself. This point of view has

never been supported by engineering studies. It, in fact,
ignores a significant alternative: certify for DoD use and

support the continuing development of off-the-shelf (commercial

and Government-sponsored) software engineering environments.
Advocates of a commercial environment present four arguments:

(1) some existing commercial environments are suitable or can be

adapted for military use, (2) DoD should leverage some of the

considerable investment that the commercial sector has made in

software development environments, (3) commercial environments

are, in any event, already being used for military software

development, and (4) growing market interest rather than
military needs will drive the development of commercial

environments resulting in cost savings to the military if it

adapts a commercial environment instead of developing a

specialized military environment.

Similar to the purely commercial option is the option of

Government-sponsored near-term Ada Programming Support

Environments (APSE'S). The adaptation of APSE's for DoD-wide

use avoids many of the barriers to immediate adoption posed by
the commercial off-the-shelf environments. For example, the

A- 16

fact that an APSE is based on Ada eliminates the need to adapt

to it. Futhermore, since Ada language compilers must be

certified for DoD use, the issue of how the environment is to be

qualified is not as significant. Additionally, there are

activities underway to develop capabilities to evaluate and

validate APSE's (see, e.g., (8)).

The choice of an APSE alternative gives rise to two further

options: choose a Government-sponsored APSE such as the Army

Ada Language System (ALS) or adapt a commercial APSE. The only

difference between these two approaches lies in commercial

practices such as who will retain rights to the environment and

how the environment is to be distributed to users. As the

Government retains more and more control of the environment,

this option becomes more similar to the JSSEE and Service

Laboratory options presented above.

3.1 Description of Approach

Key to the commercial alternative is the fact that the

commercial sector has already designed, implemented, and placed

into use software development environments of considerable power

and sophistication. The risk of adopting one or more of these

environments for DoD use is lowered since the technologies have

gained some degree of maturity.

Before defining a specific approach to this alternative,

the possibilities for adopting and adapting a commercial

environment should be examined. Three possibilities for

adopting a commercial environment are:

1. License: In this method, the Government acts as a

broker for an environment or collection of

environments. By a separate, and independent,

Evaluation and Validation (E&V) (8) the DoD would

approve a given environment for MCCR use and place it

on a list of such environments. If a contractor

A-17

wished to use a commercially available environment,
he would consult the list of approved environments and

enter into a separate licensing agreement with the
vendor of an environment. The Government is protected

from the idiosynchracies of the development
environment in three ways. First, the E&V increases

the likelihood that the environment contains a
standard "core" capability. Second, a thorough

development Test and Evalution (T&E) program on the
delivered MCCR software insures that the operational

system will be supportable in any environment that

supports the core capability (see, e.g., (9) for
details). Third, vendors on the approved list have an

economic incentive to improve their product.

2. Purchase: A purchasing agreement gives the Government

rights to a software environment. The basic goals of

this option are similar to the licensing arrangement
described above, with the exception that the DoD

becomes the distributor of a Government-owned
environment. The viability of this option depends on
developers being willing to give up a portion of their

rights in the environment to the Government. It may
be economically feasible to acquire more than one

environment in this fashion. Alternatively, it may be
desirable to let the candidate environments compete
with each other, the winner to be chosen in a

competitive "fly-off".

3. Procurement: This method allows the Government to be

a co-developer of an existing system by a two-step
process. First, a candidate or set of candidate

environments is identified and a set of issues to be
resolved by adaptation is constructed for each

environment. Second, a development contract is let to

A-18

I

adapt each candidate environment for MCCR use. Rights

in the resulting environment are then determined by

the contracting instrument and need not be uniform
across the candidates. Integrated systems consisting

of both hardware and software could be candidates
since the Warner Amendment exempts MCCR applications

from the normal acquisition process for computers as

specified by the Brooks Bill (Public Law 89-306, 30

October 1965).

Central to the success of an off-the-shelf commercial

alternative (see strategies 1-3 above) is the adaptation of the

environment. If an environment is not immediately suitable for
MCCR use, an adaptation procedure must be initiated to "harden"

the software environment. In most cases, this will turn out to
be an extension of the commercial environment along one or more

axes. Some of the possible extensions and the feasbility of
making them follow.

3.1.1 Basic Extensions. These are fundamental changes to

the core of the environment. They may require changes to the

environment's kernel or to the operating system on which the

environment runs.

3.1.1.1 Rehosting. This adaptation is very easy as

long as the environment has been well-designed and has an inner
kernel containing the host machine dependent parts of the

environment. If the environment requires a special mechanism

then it can be handled by building a virtual machine on the new

host machine.

3.1.1.2 Data Management Systems. If the environment

cannot handle the large databases expected in MCCR software

development and maintenance situations, then a database manager

may have to be introduced. Experience has shown that as

software engineering environments expand, database management
systems (or their functional equivalent) become necessary to

A-19

provide module to module interface, to spool information to

project files, and to provide "quick codes" for a project.

There are several possible approaches to installing an adequate
database capability where none existed previously. These range

from installing a commercially available database management
system to acquiring a database machine. If performance issues

dominate, a separate development may have to be undertaken to

resolve outstanding issues, but the technology to be brought

into play in this option is fairly well developed.

3.1.1.3 Human Interfaces. The engineering of the

interfaces will depend on the exact environment under

discussion. Some environments rely heavily on graphic

interfaces, menus and pointing devices, while others are command

language driven.

3.1.1.4 Kernel Software Engineering Environments.

The Kernel Ada Programming Support Environment (KAPSE) and its

proposed interface standard (CAIS) provide a basis for

constructing a kernel environment. It is possible (a prototype

may be constructed to confirm this) to use CAIS as a definition

of a virtual machine and operating system. The job of moving an

existing environment to such a machine is then reduced to a

rehosting problem.

3.1.2 DoD-Approved Languages. Most state-of-the-art

environments localize the dependency on programming languages

being used into a subset of tools. A major exception to this

rule of thumb is the Interlisp environment, although Interlisp

has reduced the problem to one of internal representation.

3.1.2.1 Ada. Once compilers and programming support

tools become available for Ada, they should be transportable to

commercial environments. The internal language Diana also needs

to be adaptable in this fashion. A number of environments (see

the environments discussed in 3.3 below) can handle these

changes easily. For more highly integrated environments, such

A- 20

!

adaptation will be more difficult and would probably need some

degree of research and development.

3.1.2.2 Other High-Order Languages. Languages such

as Fortran, Jovial and CMS-2 have some of the same

characteristics as Ada, but there are notable exceptions that

increase the cost and risk associated with adaptation of

environments. The first is the difficulty and cost associated

with transporting the language. In some cases (e.g., Fortran)

such transportation is supported by an extensive history and

many tools to aid the engineer. In other cases (e.g., CMS-2),

massive machine dependencies, a lack of broadly based user

groups and relatively few tools make transportation much

riskier.

3.1.2.3 Special Target Machines. The situation for

specialized target hardware gives rise to many of the same

problems discussed in 3.1.2.2. In addition, special downloading

capabilities have to be provided.

3.1.3 Methodology Support. As alluded to in previous

studies of the military software environment problem, support

for DoD development and life cycle methodologies is an important

factor in defining and approving an environment.

3.1.3.1 MIL-STD-SDS. The SDS provides a complete

methodology and reporting system. Implementing an SDS-oriented

software engineering environment would have the advantage of

enabling subsets to be drawn for use in other (non-MCCR or

civilian) applications. The principal requirements levied by

standards such as SDS surface in document management problems.

There is little doubt that any of the environments that are

likely candidates for adoption can accommodate SDS.

3.1.3.2 Specific Methodologies. Problems will arise

only when there is a basic incompatibility between the

methodology being imposed on the development and the support

A-21

provided by the environment. As a rule, the most promising

commercial environments depend little on methodological

considerations. On the other hand, the more integrated the

environment, the more methodology-dependent it appears.

3.1.4 Tools. The set of tasks supported by the tool set

in the environment is an important consideration in applying the

environment to an MCCR problem. The tools must be capable of

supporting contractual requirements, for example.

3.1.4.1 Absorbing Existing Tools. This is a

programming technology problem. If the environment supports the

language in which the tool is programmed, then the tool can be

adapted. There are a variety of sources for MCCR-related tools

that could be absorbed.

3.1.4.2 Absorbing Future Tools. As with existing

tools, the technical issues resulting from tool absorption are

standard ones. The main difference between existing and

potential tools is that engineering issues for future tool

absorption can be resolved at very early design stages of the

tool, reducing cost and risk.

3.2 objections and Responses
Commercial alternatives are frequently dismissed as being

unworkable in a number of dimensions:

1. Commercial environments are not suitable for MCCR

applications, because the requirements are more

stringent than those of other applications.

2. Proprietary barriers present long-term support risks

of sole source reliance.

3. Unstandardized environments present risks of increased

costs due to incompatibilities and proliferation.

A- 22

I

4. The most attractive commercial environments will not

be made available for MCCR applications because

contractors are unwilling to relinquish even a portion

of their rights to the environment to the Government.

However, software development environments, software

engineering practice, computer software technology and the

nature of the computer software industry have changed

considerably since these objections were first formulated. It

can now be documented that:

1. Not only are state-of-the-art commercial environments

capable of supporting MCCR applications, there are

commercial environments that are currently being

applied in applications that share the extreme

requirements of MCCR appplications.

2. The perceived proprietary barriers are not

insurmountable. A creative acquisition strategy

supported by a system of incentives can reduce or
eliminate the risk of being bound to one supplier.

3. Proliferation is not a significant source of risk in

software engineering environments. While

standardization on source languages (e.g., Ada) and

certain other aspects of the development process

(e.g., MIL-STD-SDS) are essential risk reducing

factors, the environment itself is not. In fact,

deliverable specifications, and creative and well-

managed software test and evaluation have been

demonstrated to be the determining factor in the

successful transition between development and support

environments.

4. Not only are the best commercial environments

available for MCCR applications, but many of the

developers are currently willing to contract with DoD

A-23

for insertion of these environments into standard

practice.

The commercial alternatives do not preclude a long-term

plan for an advanced software factory. They do however present

some attractive advantages: availability, low cost, and an

opportunity to immediately use advanced technology. In

addition, this alternative has the advantage of being consistent
with the appearance of the SEI and the recommendations of the

IDA-STARS Rights in Data Technical Working Group (10). It also

utilizes proven technologies and proven technologies are

essential for MCCR applications.

3.3 Discussion

A critical objection raised in the previous section is the

demonstration of the technology. In this section, we provide a

more detailed response by surveying environments that may be

candidates for inclusion in the off-the-shelf commercial

alternative. These commercial-application environments,

designed and developed for non-MCCR applications, require

adaptation.

3.3.1. Existing Environments. Software environment
research has grown and in some senses paced the development of

software technology. This section surveys the capabilities of
three development environments. These environments have been

chosen to illustrate the range and variety of functions and

architectures that are available.

1. The Xerox Development Environment (XDE) is a highly
integrated software development system consisting of

hardware, programming languages, user interfaces, com-

puter network and system resources.

2. Unix is a highly successful operating system that is

gaining de facto standard status among 16-32 bit com-

A- 24

AD-A145 285 SOFTWARE ENGINEERING ENVIRONMENTS FOR MISSION CRITCAL'..
APPLICATIONS -- S U) INSTIUT F OR OEFENSE ANALYSES
ALEXANDRIAVA R ADEMIL OF AL AUGR64 IDA-P 789

UNCASFE ID/Q8-86 D938--01FG92 N

111111.
1111IL25IIIII8

V CRCCOP RESOL.TION TEST CHART

NA' NA. B.QE- -F STAN aA 5 - 965-

Ir

I
interfacing that encourages certain desirable software

design methodologies.

3. The ITT Programming Support Environment (PSE)

presented here is actually an amalgam of four

development environments that has been constructed by

ITT to construct and maintain the ITT 1240 Digital

Switch. Although not one of these environments

exhibits all of the tools and features discussed here,

they do in concert present these capabilities. Key

features of the PSE are its low cost and the degree to

which the PSE uses off-the-shelf tools and integrating

software.

These three environments have been chosen for examination

for a number of reasons. The first is the relative maturity of

the software. They have been used, at least in part, over a

number of years and have acquired a sizable user community.

Second, they lie outside the realm of standard MCCR

environments. Third, these environments span the usable range

of integration: from the highly integrated XDE to the loosely

integrated PSE. The relative strengths and weaknesses of

integrated versus non-integrated environments have been

discussed elsewhere in this report.

One environment that we have used as an example other

places but which will not be examined in detail is the Interlisp

environment. This is mainly because the applications to which

Interlisp is usually put. Interlisp is a laboratory software

development environment that'is soon to be available

commercially. It supports complex research projects formulated

in the Lisp language and has been used mainly for Artificial

Intelligence applications in the past. It does, however, have

the potential for supporting other languages besides Lisp.

A-25

Il

3.3.1.1 The Xerox Development Environment (XDE)

XDE is the commercial version of Xerox's Mesa software

development environment, a system of software engineering tools,

aids, and resources that has been the standard software

environment at Xerox since 1980. At a superficial level, XDE is
based on the Mesa language which bears many similarities to the

Ada language. Xerox software systems are destined for embedded

computer applications involving many MCCR characteristics.

The most striking aspect of the XDE system is its level of

integration. It is a total system built around a hardware base

of workstations, bit-mapped displays and advanced graphics capa-
bilities, Ethernet distribution of system resources, and shared

system services. A disadvantage of this approach for MCCR

applications is the inherent performance limitations of the

workstations. Xerox plans to actively support the adaptation of

XDE and interfacing of system capabilities to other classes of

systems (e.g., VAX 11/780 class machines) and seems to be aware

of the need for constructing plug-compatible interfaces with

other environments.

XDE software consists of a col~iection of tools and

interfaces that have been constructed into an environment. XDE

tools are organized into the following categories:

1. User Support Tools: mail, file services and printing
services.

2. Mesa Language Development: compilers, debuggers.

3. Non Language-Specific Development Tools: project
management systems.

4. Pilot Operating System: virtual memory systems,
process controller windowing.

Currently XDE consists of approximately 50 supported tools.

in this environment "supported* is precisely defined and tied to

A- 26

a release protocol--that is, a configuration management model
that guarantees stability of supported services. A given
environment may contain many more tools that are not supported

or are in more fluid stages of development. In addition to the
tools, XDE contains a great deal of "glue". The total size of

the XDE is approximately 400,000 lines of Mesa source code.

In the ten years that followed the appearance of the Mesa
programming language, the XDE evolved to address the following

concerns:

I. construction of large embedded system software and
production code for embedded computer products

2. support of evolutionary system development and

responsiveness in situations where change is expected

(incremental changes resulting in incremental costs)

3. integration of tools.

The resulting environment has been used for product development
by two system development divisions at Xerox as well as by

Versatek. By 1982, there were over 800 man-years of experience
with the environment in the following areas:

1.5M lines of product code

0.7M lines of internal tools

1.OM lines of system prototypes.

Among the products constructed with XDE are the STAR office

automation software, Xerox Network System, XDE itself, VLSI

layout and design facilities, the Xerox 5700 printer software, a

variety of CAD/CAM tools, and copier controllers.

XDE exhibits a number of design features that are often

cited by users as unique and an inducement to heavy use. The

design of the environment is based on a tool concept in which
the tools play a passive, non-preemptive, and non-intrusive

role. User interfaces are controlled by the user. In

A-27

appearance the user interface is based on windows and menus with

a high-quality bit-mapped display and pointing device called a

mouse as the chief communications media. It is possible to
construct layers of tools and enforce cooperative protocols
between layers, so that, for example, when more than one tool
wants access to a file, access is granted in a reasonable way

(e.g., during a recompile, active windows that are affected are

also updated).

XDE offers support for other languages through its non-
language dependent facilities and implementations of C, Fortran

and Pascal are either in progress or are under discussion.

Similarities between Mesa and Ada suggest that Ada

implementations are not far behind.

XDE supports the system modelling and design tools needed

for the construction of large systems (e.g., involving 6,000
files, 200 or more components, more than 50 programmers and at

least 500,000 delivered source lines). XDE is also suited to

projects in which development is distributed and parallel. The

release structure is especially supportive in situations where

the developer and the maintainer are not the same.

Essential information about the system being developed is

contained in interface descriptions (i.e., connections between

modules), compilation information, and file information as well

as the mechanical support needed to manipulate this information.

One area in which additional development is needed is in

analysis and reporting that would make little sense for

commercial software but will be highly used in DoD projects.

XDE is currently workstation-based and runs on processors

with large virtual address spaces. Users interact with hardware

through its graphics terminal using keyboards and a mouse.

Storage is by means of rigid and floppy disks. Users and

network services are interconnected by a high-bandwidth

A- 28

Ethernet. Xerox plans on releasing the source code for network

protocols so that these networks can be interfaced to non-Xerox

prod cts.3.3.1.2 The Unix Progra mmuing Environment

The Unix operating system was developed at Bell

Laboratories in the early 1970's to provide programming support
to the developers of system software. Until the late 1970's it

was widely distributed to the academic and commercial world on
an unsupported basis. It has since become the system of choice

for a wide variety of machines, most notably 16 and 32 bit
workstations. Unix system III was offered in 1981 as a

supported Western Electric product and a major system upgrade

has recently been announced.

Unix can be viewed in two different ways. First, it is an

operating system and as such it can host a variety of

application systems ranging from word processing to embedded
software development. Unix has had considerable influence on

other operating systems in the last ten years. Many operating

systems of this vintage in direct imitation of Unix or indirect

imitation of Unix features have received general acclaim (e.g.,
pipes).

A second way to view Unix is as a software development

support system. The vast majority of its more novel features

are oriented toward this task and there are many success stories
of large, complex software systems being built with Unix or one

of its "look-alikes."

Unix reflects--but does not rigorously enforce--a specific

philosophy of software development. A major initial goal was to

allow software to be developed on small systems and then

downloaded. Thus it fairly naturally supports teams working on

the development of large-scale software systems with a
relatively minimal investment in the system supporting the

A- 29

development team. Whatever the scale of the system being

developed using Unix, it is best to view it as a collection of

small modules having simple interfaces since all of the system
development tools in Unix are oriented toward this perception of

software.

The Unix system consists of three major parts:

1. The Kernel: a basic operating system providing a file
system and support for input/output, nested process

activation and interprocess communication.

2. Command Language: a user control language that allows

general programming concepts to be used in specifying

the activation of processes.

3. Tools: programs that can be freely interfaced to

perform some overall processing function.

Unix System III provides over 200 tools that carry out very

simple tasks (like displaying the current time and date) as well

as very complex tasks (like preparing a document for
phototypesetting). Unix also contains tools that help in the

building of other specialized or general purpose tools. An

example of the latter is the tools called YACC (Yet Another

Compiler Compiler) which is used for compiler construction. In
addition to these vendor supplied tools, there are virtually

thousands of tools available within the large Unix users

community that has emerged over the last decade. Many of these

tools are available at little or no cost.

The original version of Unix was implemented by one person
in one year. Thereafter, it was re-programmed in a non-assembly

language (so that it could be ported to a new machine) in an

additional person-year. These preliminary versions contained
the kernel, the command language (or shell) and a small number

of tools. New tools were added as a result of its use during

the next five years both inside and outside Bell Laboratories.

A-30

llll i i H| -A

During this period it became widely used in the academic sector

but its use in the commercial marketplace was limited.

In the late 1970's Unix was rehosted to VAX's and in the
process a major redesign and upgrade was carried out. This was

accomplished by one person in about 18 months and set the stage
for an ever broader propagation of Unix throughout the

community. Coincidentally, Unix caught the fancy of the

commercial sector and its use began to spread into commercial

and government arenas.

Very few goals have ever been explicitly stated for how
Unix should support software development. The evolution of Unix

has resulted in it exhibiting several attributes that are

desirable for the development of large-scale systems:

1. the environment's host machine is not necessarily the
same as the target machine on which the operational

software executes,

2. a system is composed of modules, each performing one

(generally simple) function and with a simple

inter face

3. new, perhaps specialized, tools can be easily

generated and incorporated into the environment.

Unix itself is sufficient to support the development of
software in many application areas. However, it fails to cover

the life cycle and frequently needs to be enhanced to be of use
in developing systems in specific application areas.

3.3.1.3 The ITT Programming Support Environment (PSE)

The ITT Programming Support Environment is the collection
of tools, methodologies and life cycle models used by ITT and

its member corporations worldwide to design, construct and

support the software for a family of digital switches known as

the ITT 1240. In most of this discussion, the term PSE will be
used loosely to apply to a collection of environments rather

A- 31

than a single environment. In practice, however, a loosely

integrated collection of capabilities such as the ones described

here could be assembled from existing environments.

Unlike XDE and Unix, PSE does not have a coherent

architecture to any useful degree. It consists of loosely

coupled tool sets--the integrating mechanism is mainly to

provide the host operating system and its utilities.

The ITT 1240 digital switch is the largest development

project undertaken by ITT. The software effort alone is

remarkable for its size, complexity and distributed nature. It

is a multinational development with significant design and

implementation stages scattered over several countries. The

product supported by PSE is a digital exchange--that is, a

variety of network modules providing telephonic functions.

These modules are configured to respond to the requirements of a

particular installation and may service phone lines for a

building or a city of several million people.

The 1240 software is programmed in CH{ILL, a special-

purpose language for telecommunications applications. The

product life cycle supported by PSE consists of the following

major stages:

-- product definition

-- design

-- implementation

-- analysis and testing

-- maintenance

-- termination

ITT has plans to transition the technology developed in

support of the 1240 development effort into use on other

products. Company spokesmen also expressed interest in

A- 32

!

Icommercial ventures involving PSE, although resources for
exploring a new software market appear to be somewhat limited at

the moment.

The PSE environment is oriented toward the engineering of

software components that can be individually tested and

validated. These components are then assembled in off-the-shelf

fashion into a completed switch by a separate product team.

Still other groups are responsible for maintenance. The PSE

provides tool support for this process of development-production

and manufacturing-maintenance. Tools can be classified by the
activities they support:

-- project management

-- system design

-- programming design

-- unit code and testing

-- integration

-- system testing

-- production, manufacturing and distribution

-- documentation

-- maintenance

-- change control

The ITT Software Methodology consists of a program design

phase in which a nucleus of product software is created,

followed by a customer development engineering phase in which

the nucleus evolves and finally a customer application

engineering phase during which the installation requirements of

a final site location are integrated into the product.

Tool packages were developed to support these activities.

These may be viewed as subsystems of PSE. The major support

subsystems are:

1. SDSS (Software Development Support System): Consists

of tools used to create program load modules from

A-33

CHILL source code and is used by development

programmers and customer design engineers.

2. IDSS (Integrated Documentation Support System): This

system is used for the creation and management ofj

documents containing both text and graphics. Its main

application is in the production of user

document at ion.

3. CHARTS (Change Handling and Routing System): This
subsystem manages the tracking and status of software

problem reports and the changes they induce.

4. TEX (Text Executive): This text harness/driver

provides host level simulation of target systems and

environments.

5. LTF (Laborabory Testing Facilities): LTF is the

system integration test control software.

6. SPMS (Software Production Monitor System): This is
the heart of the configuration management system,

providing version management and control facilities
and a database of product descriptions.

7. PRISM (Program Information and Status Management

System): This system keeps track of software
components for schedule and planning purposes and also

manages interrelationships between modules for system

integration purposes.

8. CO4SS (Configuration Management Support System): This

is the primary parts list database.

9. CAESS (Customer Application Engineering and Support

System): This system accepts customer data for a

specific switch and provides engineers with production

information for that switch.

A- 34

10. SMSS (Software Manufacturing Support System): This

system aids in the assembling of the software for a

specific switch from parts and specifications.

Currently, PSE consists of about 50 tools and tool sets.

These tools are in the process of an on-going development effort

that will result in a slightly more integrated environment. PSE

is currently hosted on IBM 370/VMS systems, but the newer

versions are targeted for VAX (Unix and VMS) computers.

In the early 1970's ITT realized that the design of its

embedded computer software (already in the 500K delivered

sources line/500 man-year size range) would increase in size and

complexity by at least an order of magnitude. Planning for the

1240 product made these projections concrete.

To respond to the demands of software development on this

scale, ITT established (in 1981) a center in Harlow, England to

compile and deliver the tools needed to develop and manufacture

1240 switches.

ITT's overriding design philosophy is to view the PSE as an

economically feasible way of integrating and coupling support

tools. Interfaces are for the most part provided by the host

environment. Tools are (whenever economically possible)

purchased off-the-shelf or re-used. ITT has even entered into

agreements with potential competitors to procure proprietary

tools.

To promote maximum re-usability in programming

environments, ITT has settled on both a standardized software

life cycle and a production mechanism for programming support

tools. The essence of the life cycle (the details of which are

company proprietary) is to meet the special needs of ITT's

products:

-- Large Development: 1240 is a billion dollar

development

A-3 5

-- Small Development: European developments are small by

comparison

- Instrumentation: The development process should be

audi table

-- Multiple Application: Products such as the 1240 are

used for many different purposes

- Maintenance: The maintenance problems of ITT products

are unique (massive patching, relatively stable

requirements, an evolutionary orientation to flagship

products)

-- Technology Migration: The life cycle support

organizations are not the same as the developing

organizations.

The center in Harlow maintains a matrix responsibility for

tool development. For example, a product manager may be

responsible for a tool or group of tools and for meeting user

requirements. The activities and interfaces identified for the
delivery of tool services include the following:

-- Identification of User Requirements

-- Process Definition

-- Architecture

-- Decision to Build or Buy

-- Tool Develop..ient

-- Integration of Collections of Tools

-- Qualification

-- Distribution and Installation Support

-- Service and Maintenance

In short, the ITTI design philosophy is a bottom-up

strategy. Tools are the essential feature of its environment,

and integrating mechanisms are defined at the tool level. The

integrating interfaces to the tool sets have been constructed

A- 36

using commercially available components. For example, the

VAX/VMS implementation is built on a standard DEC product ("ALL-

IN-l") which does menu management and tool linking

automatically. Therefore the user can interact with ALL-IN-I to

determine menus and forms that will be required, standard VMS

database protocols to access the file system and a

communications interface. Even so, ITT has a considerable

investment in PSE. The development of the tool set spanned five

years (1977-1982) and consumed 500 man-years. An additional 100

man-years per year is required to support the tools. Even when

the customer application engineering tools are not considered,

the ITT estimates of the development cost of the PSE lie in the

$lOM-$50M range.

The exact contents of the PSE tool set is company

proprietary, although the subsystem descriptions (given above)

reveal the functions of the component tools:

1. Management: tools for costing, tracking, personnel

management and tasking

2. Development: tools for design, interface utilization,

development utilities, and a test environment

3. Customer Development Engineering: tools for evolving

the product nucleus

4. Customer Application Engineering: the CAESS subsystem

described earlier comprises these tools

5. Maintenance: these are tools for patching errors and

modifications into the delivered programs.

3.3.1.4 Ada Programming Support Environments (APSE)

Commercial and Government-sponsored APSES are currently

under development. The Army and Air Force have ongoing efforts

to procure tools to support software development (principally

coding and unit test activities) using Ada. Those tool sets,

A- 37

known respectively as the Ada Language System (ALS), and Ada

Integrated Environment (AIE), are in different stages of

development.

The Ada Language System (ALS), whose first production

release is due in January 1985, is an Army-sponsored effort to

design, develop, test, and document a MAPSE (Minimal Ada

Programming Support Environment) intially hosted on a VAX 11/780

computer. The ALS incorporates the following (12):

o Ada Compiler Machine Independent Section
o ALS VAX 11/780 Code Generator
o ALS VAX 11/780 Assembler
o ALS VAX 11/780 Linker
o ALS VAX 11/780 Listing Tool
o ALS VAX 11/780 Exporter
o ALS VAX 11/VMS Symbolic Debugger
o ALS VAX 11/780 Runtime Support Library
o Program Library Manager Tool
o Maintenance Aids Tools
o Container Data Manager/Program Library Manager
o Command Language Processor
o Environment Data Manager
o Session and File Control Tools
o File Administrator
o HELP Facility
o KAPSE

The Ada Integrated Environment (AIE) is an Air Force-

sponsored effort to design, develop, test, and document a MAPSE

including a state-of-the-art rehostable/retargetable Ada

compiler. The AIE, which will be developed in accordance with

general requirements specified in STONEMAN (February 1980), will

be hosted on an IBM 4341 Computer System. The AIE incorporates

the following components:

o Ada Compiler targeted to IBM 4341
o AIE IBM 4341 Program Builder/Linker
o AIE IBM 4341 Unit Lister
o AIE IBM 4341 Program Library Manager
o AIE IBM 4341 Change Analyzer
o AIE IBM 4341 Recompilation Minimizer
o AIE IBM 4341 Link Map/Cross Reference Lister
o AIE IBM 4341 Source Reconstructor
o AIE IBM 4341 Run Time System

A-38

o AIE IBM 4341 Symbolic Debugger
o KAPSE/Virtual Operating System0 Ratgbase Maniger0 Risory an aup/Recovery Facilities

o Configuration Management Package
o High Level I/O Package
o Mail Facility
o Command Language Processor
o HELP Facility
o Editor
o MAPSE Generation and Support Facilities (12).

For more than a year the environment and tools have been on hold
while efforts have been concentrated on the Ada compiler that

will run initially under the Unix-like UTS operation system.

Commercial efforts to develop APSEs include those by

Telesoft and Data General. These APSEs are being developed to

operate in concert with each company's respective Ada compiler.

3.4 Sumary

The off-the-shelf options present a number of attractive

features, including the opportunity for an early environment

capability.

Time: This option provides near- and possibly mid-term

solutions. The least integrated commercial environments --

exclusive of APSEs can probably be adapted within a calendar

year. The most integrated would certainly require several

person-years to adapt. Of course, the commercial options also

provide the possibility of evolving over longer periods of time.

Technical Risk: Since the adaptation of existing

environments is an incremental process -- i.e., capabilities can

be added to the environment slowly -- the technical risk can be

controlled. The only other significant source of risk is the

possibility that the adapted environment may not be suitable for

some MCCR applications. This risk can be minimized if the

commercial option is combined with other strategies (e.g.,

application-oriented options).

Design Methods: Since the off-the-shelf options start with

A-39

an existing technology base and engineer MCCR environments from

that base, the design method is bottom-up.

Funding Source: The source of funds can be either private

or governmental depending on how the adaptation takes place. If

the Government funds all or a portion of the adaptation efforts,

then the Government investment probably leverages a 10 to 100

fold investment in environment R&D.

Implemuentors: Whether the envitonment was sponsored by the

Government or commercially, the actual developer and

implementors are full-time environment developers and vendors.

Ownership: The ownership of commercially-sponsored

environments resides in the private sector. In light of current

acquisition regulations, this may result in some loss of rights

in the environment by the developer. Therefore, this option

should be considered in concert with the Revising Policy

alternative.

Business Model: This option assumes a standard model of

business practices in which the technology is licensed to users

under standard contracts.

Acquisition Strategy: The Government will specify the

range of acceptable environments to contractors. The

contractors'I responsibility is to present a software environment

that meets contract requirements. There are two possibilities.

First, the MCCR developer can choose an already approved

environment and arrange (e.g. by licensing) for the use of that

environment with its owner. Second, the developer can offer his

own environment for E&V (at the developer's expense).

Maintainer: The maintenance and support of the of f-the-

shelf environments should be carried out by their owners.

Management: The management of the off-the-shelf

alternatives is decentralized. Once the necessary management

practices are in place (which may be by centralized decision

A-40

making) - e.g., E&V procedures and streamlined procurement

regulations -all other decision making is localized.

4. Sponsoring Commercial DeveloPment

This alternative is based on the approach adopted by the

Very High Speed Integrated Circuit (VHSIC) program for

increasing industrial readiness in hardware technologies. The

key idea behind this alternative is to invest (probably

competitively) in a small number of industrial organizations

with the express purpose of increasing their software

engineering environment capabilities. By combining this

technique with either modified procurement practices (see, eg.,

Section 6) or one of the commercial alternatives, this

Government investment would be transitioned to more widespread

use.

4.1 Description of Approach

The degree to which existing DoD contractors can be

expected to respond to this sort of option depends to a large

extent on their readiness to provide environments that are

suitable for investment and transitioning and their willingness

to adapt proprietary environments for more widespread use. A

number of factors enter into assessing the overall preparedness

of industry to participate in this way.

Methodologies: A primary consideration is whether or not a

given company uses a software development approach or

methodology that is suitable for automation in an environment.

Such methodologies may be characterized by the life cycle phases

they encompass, the languages and applications that they are

capable of supporting and the extent to which the methodology

has been defined and formalized in standards, practices and

procedures that can be monitored and evaluated. In many cases,

although a company has in place such methodologies, these are

A-41

used solely for the software development of the organization,

Government software development being covered by different

methodologies to respond to standards and regulations that are
included in contracts.

An important consideration in judging the maturity of a
methodology is the maturity of its user community. As a first

measure of this maturity, the operating history of the
methodology is important. The number of successful uses of the

methodology, the size of its user community and the complexity
of software constructed under the methodology are all important

considerations in making these determinations. Another concern
is the extent to which the methodology has been allowed to

migrate outside the originating organization. Corporations may

find market advantages in widely publicizing their methodologies

(either in standard scientific and technical outlets such as
refereed journals or conference proceedings or in trade

publications). More often than not, however, these sources are

not suitable for transitioning a methodology to more widespread

use. in cases, for example, where a "methodology" is really

just a formalization of the procedures that have arisen in the

parent organization, the best that can be hoped for is a

"..here's how we did it..." exposition suitable for publication

in internal magazines and newsletters but of limited external

interest.

Automation: A company that seeks to expand its methodology

using Government money may wish to enhance the extent to which

the methodology is automated. The resulting environme:it or tool

set is then a basis for future sponsored expansion. The

questions surrounding the maturity of the automated methodology,

its history on relevant projects, and the company's willingness

to adapt and export the automated capabilities are important.

Investment and Support: A driving force behind the success
of this approach will be the size of the investment needed to

A- 42

draw a set of promising methodologies and environments to the

stage needed for current and planned MCCR requirements. The

fledgling environments may be developed under IR&D arrangements

that are not suitable for Government investments. By the same

token, a company may have commercial plans for developed

environments and the acquisition of any Government-funded

capabilities may deny them data rights that are crucial to

business plans. Therefore, the dollar size of the Government

investment may be less important than the overall climate in

which the investment is carried out.

A basic strategy for implementing this alternative is based

on an incremental investment, acqt'sition, and distribution of

relevant environments. The critic. stages of the process are

discussed briefly below.

Assessment: This stage assesses the readiness of industry

to provide environments. A competitive offerir:. should be used

to compile a list of candidate environments and metnodologies

for investment by the Government. Although it is expected that

there will be a mix of mature and immature environments in which

DOD will be interested, the key factor in carrying out this

assessment will be the extent to which a company has already

invested in its approach. This option, for example, is not

intended to be a Government subsidy to the design and

implementation of a "from-scratch" environment.

Selection: A small number of candidate environments are

selected from the results of the competitive assessment.

Factors to consider in this selection are the cost of the

development effort yet to be undertaken, the extent to which the

capability represented by the company advances the state of

practice for DOD software development, the degree of technical

risk involved in completing the environment, the willingness of

the company to allow its technology to be transitioned, and the

global assessment of how !4CCR software development will be

A- 43

affected by the availability or non availability of the

environment over near-, mid-, and long-term horizons.

Contract Award and Development: Contracts are awarded for
the completion and delivery of environments or tool sets that
support the methodologies that have been selected. These
development efforts should be evaluated and monitored using the

experience gained by the VHSIC program.

Trazauitioning: The first uses of the developed

environments will be critical factors in determining the success
of the sponsored efforts. The best strategies may be to

encourage competitive teaming arrangements on subsequent

contracts. For example, if Companies A and B have received

special development contracts for their environments, they may
develop technologies that intersect each other to a considerable

degree. The transitioning of each technology thus depends on

the successful use of this technology on a DoD development
effort. Company A may demonstrate its technology by bidding on

a contract. Suppose however that Company B cannot bid on the
same contract that A bids on. The contracting agent in this

case may choose to "broker" a teaming arrangement between B and

a third party that has the capability to respond competively

with Company A.

A variation on this approach could be for the Government to

acquire an environment through the standard procurement process.
The Government could specify productivity and quality rates for

the environment that are well in excess of current rates. There

should be adequate lead time for the investment needed to develop
practical approaches. The procurement could have separate

specification phases and development phases and, perhaps,

multiple participants in the specification phase. An RFI

(Request for Information) asking for definition of what is

required to achieve significant improvements could precede the

actual procurement of the environment.

A- 44

4.2 Objections and Responses

There are three primary objections that can be raised to

this alternative. The first is that the approach is based on a

false comparison between software and integrated circuit

technologies. The second is that it throws Government weight

and support behind a small number of contractors and will

eventually result in the favoring of these contractors in

improper ways. The third is that industry has not prepared

itself and is seeking a Government subsidy for R&D programs that

are best supported privately.

The essence of the first objection is that while the VHSIC

program was designed to invest in and upgrade factories and

facilities, the corresponding model for software can only result

in the upgr"'ding of capabilities. The key difference seems to

be the degree to which software investments can be viewed as

investments in capital improvements or in measurable industrial

improvements. In the case of integrated circuits, the

improvements can be quantified by the expense of fabrication

facilities, new processes, and the increased functionality per

unit cost of circuits destined for DoD applications.

Sof *tware presents a number of problems in this regard.

First, measurable improvements are difficult to obtain. The

most that can be hoped for with this alternative is the

production of a oftware engineering environment. The

productivity improvements and return on investment for any such

environment are probably not predictable to any useful degree.

Second, easily identified technological innovations would have

to be essential outcomes of the selection and contracting

process. Such innovations are rare and usually not identified

until much later than their first appearance in a methodology or

tool.

A-45

The second objection is difficult to counter. Any such

strategy increases the capabilities of the company that

receives the support in an unfair way. Government investment in

Company A as opposed to Company B ultimately reduces to an

endorsement of A's technology as opposed to B's. Furthermore,

the fact that the Government has invested in A's technology
makes it less likely that B will ever be able to "catch up."
The danger is that such a situation forever locks B out of the

Government contracting cycle for software intensive systems

since A will always be one version ahead of B in its

enviornment. That is, even though Company A may deliver a

completed environment to the Government as a result of its

contract, it will retain and upgrade for proprietary purposes

those aspects of the environment that give it a commercial

advantage on subsequent procurements, even though such

capabilities were developed mainly at Government expense. This
has the ultimate effect of limiting competition and channeling

technology into a few relatively narrow paths. In a climate in

which the basic technology issues are yet to be determined, this

seems to be an unwise policy.

The third objection questions the apparent state of

industrial preparedness to respond to such an option. These are

detailed in the following section.

4.3 Status of Industrial Environments

To provide some indication of how prepared industrial

organizations are to participate in this sort of program, seven

organizations were contacted and queried about the status of

their software engineering environments. Four of the seven were
large corporations based in the same industrial sector. One

organization was a company in a different industrial sector, and
two were vendors of software ahd hardware products and services.

Four of the seven were primarily Defense contractors.

A-4 6

The groups were questioned about three aspects of their

environment capabilities: (1) methodology, (2) automated
environments, and (3) the extent of external (Government)

investment that would be desirable.

Six of the interviewees claimed to use some sort of

methodology for software development, although half of these

could only cite the Yourdon methodology as one that is

consistently adopted. Others either had plans to develop a

methodology or confused a methodology with the life cycle model

in effect in their organization. Those groups that were able to

cite documents that define the methodology (3) also protected

those documents as proprietary.

Experience with methodologies varied widely. one user of

the Yourdan methodology had applied it on a large DoD contract

involving more than 80 programmers and claims a user community

of hundreds of programmers. Others were not sure that their

methodologies had ever been rigorously applied. No group

reported documents or experience with a life cycle methodology.

Six of the seven had plans to "market their methodology".

Only one of the seven claimed any degree of automated

support for their methodology; that one turned out to be a user

interface capability. All other sources built environment

capabilities and tool sets by a combination of in-house tool

development and off-the-shelf purchases. None of the

organizations queried had a history of or plans for creating an

environment architecture. In general the capabilities provided

were more loosely coupled than the ITT PSE environment and did

not even attempt to support life cycle models or development

methodologies.

All of the groups expressed an interest in Government

support for their tool development effort. It was clear,

however, that tool investments would not be used to design an

A-47

environment but rather to enhance a pre-existing tool

capability. No cost estimates were provided by the

interviewees, but all noted that in the absence of direct DoD

support, their efforts would be accommodated under IR&D funding.

Surprisingly, even those groups that claimed they would take

Government support were prone to claiming the rights to products

of the R&D effort.

4.4 Summary

It is clear that an investment could bring about a rapid

growth in the tool capabilities of selected contractors.

Futhermore, this option is low risk since the industrial groups

apparently rely on demonstrated technology to meet their needs.

On the other hand, the approach is bottom-up to the exclusion of

innovative technology.

Obviously, Government dollars are sought to fund these

efforts, however the developers and vendors of the tools that

are most likely to be included want to claim that the Government

investment is in the "research" not in a product; in particular

the companies wish to retain all rights in their products,

making them available to the Government only under the

protection of a contract to procure operational software.

Since the Government exercises almost no control over the

internal choices of tools, there is a high degree of

decentralization in the management of this approach.

5. Application-Oriented Environments

To the extent that environments built under the previous

alternative (Sponsoring Commercial Development) cover a variety

of applications, they will be horizontally integrated over the

application area. Another alternative would be to select a

single application area and build an environment specific to

that area.

A-48

I

5.1 Description of Approach

There are several ways in which this alternative could be

addressed. In the world of DOD software, it seems most

sensible to capitalize on the capability already existing in

large Defense contractor organizations by having them prepare

environments tuned to an application area for which they have

proven expertise and experience.

The approach would be to have several Defense contractors

each build environments that are specific to particular applica-

tion areas. These would then be consolidated into a single

environment covering a variety of application areas.

5.2. Objections and Responses

The major objection to this approach is that there would be

a definite lack of commonality among the environments, making it

difficult or even impossible to integrate them into a single

environment or a small set of alternative environments. Other

objections are:

-- the environments might include proprietary information that

would be unavailable to other elements of the DoD community

-- the environments would not attend -to the problems of

acquiring software but only to the problems of developing and

supporting software

-- there would be a fairly high degree of duplication of effort

that may not be justified in terms of the risk involved.

-- software engineering environments that are not methodology

and life cycle driven may fail to be general enough to gain

widespread use, resulting in a proliferation of environments.

The problems of ownership and availability of the produced

environments have to be attacked by innovative approaches to

Government/industry rights in data issues. That these problems

A-49

can be solved in a way that is acceptable to both the Government

and to industry has been argued elsewhere (10).

The other objections can be addressed as they were in the

previous alternative, by developing a reasonable plan (such as

was developed to sponsor commercial development of the VHSIC

program) that recognizes and tries to minimize the problems that

may occur. The next section outlines such a plan.

5.3. A Scenario for Acquiring Application-oriented Environments

The major problems that must be addressed are the

duplication of effort and the inability to integrate the

produced environments. One approach to solving these problems

is to develop the environments in phases, gradually reducing the

amount of parallel effort.

Several application-oriented environment development

projects could be started in parallel. The goal of each would

be to define, design, implement, demonstrate and put into actual

use a complete, integrated environment that supports a specific

project management technique, a specific full life cycle

methodology for the development and maintenance, and the crea-

tion and evolution of software in a specific application area.

Figure A-3 depicts the appropriate organization of the

environment to foster commonality. This would not necessarily

be the physical organization for the environments; it is

intended to be a logical organization that will force conscious

decisions about the commonality of tools.

A- 50

I

APPLICATION-SPECIFIC LAYER: tools specific to the chosen
application area

GROUP LAYER: tools supporting the chosen methodology and the

chosen management approach

CORE LAYER: generic tools, tools supporting tool integration

and interoperability, and tools supporting environment

extensibility

BASE ENVIRONMENT: a specific primitive environment chosen to

foster portability and provide common facilities; could be

one of the MAPSE's currently under construction through

Government support (i.e., the ALS)

Figure A-3: An Organization for the Multiple

Development Efforts

A-51

These projects would have the following four phases.

Phase I: define a specific environment oriented

towards a specific application area, a

specific development and maintenance

methodology, and a specific project

management technique

Phase II: design the environment

Phase III: implement and demonstrate the environment

Phase IV: refine the environment and put it into

actual use.

During Phase I, each developer would prepare the

environment's definition and, in addition, would specify how

it aids the acquisition of software systems. The developer

would also identify other application areas where the

environment could be used, analyze the environment's

completeness and degree of integration, sketch a design for the

environment, prepare a brief plan for implementing the

environment, and outline a brief plan for demonstrating the

environment and putting it into actual service.

At the end of Phase I, a public review would lead to a

potential reduction of effort. This review would identify

potential commonality among parts and decide which of the

parallel efforts should carry on the development of common

parts. Phase II would result in a design for the environment

and brief plans for implementing and demonstrating the

environment and transitioning it into actual use. Another

public review would be held to not only scrub and homogenize the

designs but also to decide which of the parallel efforts would

proceed further for the common parts.

Phases III and IV would proceed to develop and demonstrate

the specific application-oriented environments utilizing the

A-52

commonly built parts.

This skeletal plan would have to be refined for actual

execution, but it provides a basic approach to developing

application-oriented environments that reduces duplication of

effort and increases the probability of intergrating resulting

environments.

As before, feasibility of this approach does not

necessarily imply desirability. In comparing it to other

approaches, there are several issues and concerns that

particularly must be addressed.

" Degree of Commonality

" Importance of Proprietary Rights In Data

" Feasibility of "Telescoping"

Public reviews and the resulting reduction and coordination of

parallel efforts may not be justified or feasible. The overall

time period available for the development of the environments

may not be adequate for review and may therefore not justify the

approach. The reduction and coordination of parallel efforts

may perturb normal staffing practices for the contracting

organizations, rendering this approach infeasible.

5.4 Summary

If industry assessments of how close contractors are to

providing application-specific environments are correct, then

this approach provides near-term and m~id-term options. The

technology is an incremental improvement of what is currently

available, and, since it builds on existing capabilities, is a

bottom-up construction of an environment capability and a low

risk approach. Other important parameters that distinguish this

option are the following:

A-53

Funding Sources: The exact determination of funding

sources depends on a number of other parameters. The range of

possibilities is from leveraged Government investment (as in

Section 4) to pure commercial development (as described in

Section 3).

Implemuentors and Maintainers: in all cases, the software
developers (contractors) are the implementors and maintainers of

the environments.

Ownership: In this option, ownership, and therefore

maintenance, of the completed environments resides with the

private sector.

Business model: The most natural business model for this

option is an adaptation of standard commercial practices (either

contract or commercial leasing/licensing depending on the source

of funding), providing Evaluation and Validation support and

insuring supportability of the delivered software by appropriate

Test and Evaluation.

MCCR Acquisition Strategy: Since ownership of environments

developed by this method will reside with the private sector, an

appropriate acquisitions strategy would be to specify

interfaces.

Management: The management of this alternative can be dis-

tributed among DoD Laboratories and other sources of scientific

guidance on application-specific matters and therefore is

decentralized.

6. Revising Policy

Unlike the other alternatives described in this report, the

option of revising policy requires a purely administrative and

policy oriented approach. The implicit assumption is that

existing technical and market forces are sufficient to produce

an advanced environment for DoD use, but that the current

climate in the Defense acquisition community works against such

A- 54

forces. The solution is therefore to modify the acquisition

climate so that the natural forces can work.

6.1 Description of Approach

Policy for acquiring software for weapons systems in the

DoD is defined in DoD Directives 5000.1, 5000.28, and 5000.29.

(Although some MCCR applications formally fall outside the realm

of these acquisitions, the policies are invoked in practice more

often than not). These policies are supported by a vast array

of directives and other policy vehicles as well as regulations

and standards that serve to implement the policy.

Some key features of existing policy include the following:

1. The goal of DoD acquisition policy is to insure the

efficient and effective acquisition of systems that

are operationally effective.

2. In most cases, the management of the acquisition is to

be decentralized.

3. Design and price competition insure cost effective

development and responsiveness to mission needs.

4. "Readiness" and suitability of the acquired system are

characteristics that are as important as schedule and

performance objectives and operational effectiveness.

5. Stability in the acquisition process should be insured

by planning and initiating low risk acquisitions and,

realistic budget estimates.

6. Ownership costs must be balanced against acquisition

costs and system effectiveness.

It has been the sentiment of several recent study groups

that in the context of developing support software such as

environments the acquisition regulations and particularly the

rights in data clauses in those regulations are not consistent

A-55

with the policy goals stated above and should be modified in

several innovative ways.

A "Rights in Data Technical Working Group" (RDTWG) (10)

reported the following:

... the Government is failing to obtain the most

innovative and creative computer software technology

from its suppliers. Thus, the Government has been

unable to take full advantage of the significant

American lead in software technology for the upgrade

of its mission critical computer resources...

The RDTWG further reported that the principal reasons for

industry reluctance to offer its best products to the Government

include the following:

1. Excessive data rights claims by the Government expose

vendors to potential losses of proprietary rights in

commercially valuable technology.

2. Government software acquisitions, contracts, and legal

vehicles are unnecessarily complex and unclear due in

part to a concern for maintenance and supportability

that are not adequately addressed by current

Government practices.

3. The active and profitable nature of the commercial

software market biases it against the Government which

seeks to maintain a set of business practices that is

incompatible with normal commercial practices, tending

to color the Government as a "bad customer."

The approach recommended by the RDTWG and other subsequent

study groups (see, e.g., (11)) includes the following features:

1. Reduce objectional data rights claims by the

Government by instituting a system of commercial

licensing practices; at the same time, modify relevant

acquisition regulations to insure that these

incursions are not mandated.

A-56

2. Provide a system of regulations, standards and

interface specifications that is sufficient to allow

the specification of MCCR software support environment

characteristics in RFP's. Require validation of

software deliverables against the specified

environments during test and evaluation.

3. Establish a Software Acquisition Board to oversee the

process.

6.2 Objections and Responses

These options have only recently been proposed, and a

coherent set of objections has not yet emerged to them.

However, in their deliberation, the following objections to

initiating any policy level changes have been encountered.

First, changes in the acquisition process for software

would create an imbalance in the acquisition of hardware and

software. The regulations and practices for the non-software

components of the system would be oriented toward one set of

objectives and carefully managed while the software would be

governed by an inconsistent "free market" approach.

The hidden assumption in this objection is that somehow the

manufacturing of the software is comparable to th *e design of the

non-software components. In fact, the current climate is one in

which imbalances abound (9, Vol. I). The goal is to improve the

development and engineering of operational software. In this

light the development environment is the "factory" in which the

software is manufactured. The Government claims on factory

technology that is not related to the operation and support of

the operational software would be sharply curtailed in this

approach.

Second, as a matter of policy, the Government cannot enter

into commercial agreements such as licensing agreements. This

A-57

is, in fact, false. Through GSA practices, the Government

routinely enters into commercial agreements that closely

resemble standard business practices.

The Government needs rights in data to development software

in order to insure the maintainability of the delivered software

and to avoid being tied to a sole-source supplier of software

and services for the life of the delivered system. This

objection has been dealt with elsewhere in this volume (see,

e.g., Section 3).

The final objection that has been raised against policy

related approaches such as the one advocated here is that such

approaches encourage gold-plating by contractors. The key to

this objection is that the "best" development environments are

not needed -- only environments that are sufficient to get the

job done. If acquisition practices are modified too

drastically, new elements of risk are introduced that affect the

stability of the acquisition. The response to this objection is

that evolutionary forces by themselves are not sufficient. The

job that will be required of the software in the next generation

of DoD systems cannot be built without access to the newest

technology available in the private sector.

6.*3 Standardization

Included in this option and others could be the development

of standards that serve to coordinate the distributed,

independent activities of the tool building community. The

feasibility of this approach is argued in this section.

6.3.1 The Approach

The central theme of this approach is standardization of

the methodologies and the interfaces among tools. By

specifying the activities to be performed, the techniques to be

used in performing them and the interfaces among the tools

A-58

that support these techniques, tool development itself can

proceed in many ways at many sites and the resulting tools could

still be consolidated to provide useful and effective

environments. The first step would be to define standards for

development, the methodology to be used on all MCCR contracts

(life cycle oriented), and the interfaces among the tools that

support the methodology. The second step would be to

develop a mechanism for certifying that tools meet these

standards and therefore could be made available for use in an

environment. The third step would be to evolve the standards to

reflect new software technology and upgrade the collection of

tools that are certified.

6.3.2 Objections

There are several objections to this approach:

-- the lack of more direct coordination leads to

unnecessary duplication of effort

-- few organizations will be able to produce

certifiable tools

-- the task of certification is too difficult

-- either the standards will be too strict, leading

to few tools achieving certified status, or too

lenient, leading to a lack of integration in the

collection of tools

As with the previous two options, these objections can be

addressed by providing a plan that tends to minimize the

negative effect of various problems. Such a plan is discussed

below.

6.3.3 Maintaining a Pool of Tools and Tool Piece Parts

For any specific project, the software engineering
environment will contain tools oriented toward the specific

A- 59

application area for the system being built and the methodology

and management practices used on the project. It will also

contain generic tools that are relatively independent of the

end-application area, the methodology, and the management

practices.

One way to prepare an environment for a specific project

would be to select applicable, existing tools, develop new

tools to make the overall collection complete, re-engineer the

tools (if needed) to integrate them, and install the

resulting collection on scme base environment. This process

requires both a pool of candidate tools and a selection

mechanism by which tools in the pool that are of value to the

project can be identified. The approach would be considerably

more effective in the long run if there were a way to feed

the new tools back into the pool, after certifying them to some

degree, so that they could be used in preparing other

environments. This is diagrammatically presented in Figure A-4.

This process of building specific environments could be

carried out in more than one phase. It might be of interest to

a contractor, for example, to select a broader range of tools

than would be used on any specific project and form a "local

pol, specific to its organization and its practices and

policies. Intermediate pools such as this could also be

oriented towards specific application areas.

A-60

I

BASE ENVIRONMENT v' SPECIFIC ENVIRONMENT

selection filter NEW TOOLSI I
POOL OF TOOLS

certification filter

Figure A-4: Preparing Specific Environments Using a

Pool of Tools

A-61

The individual elements of such an approach already exist.

Any one of a number of available environments, from the

relatively primitive Unix environment to the more extensive DCDS

environment developed at TRW, Huntsville, could be used as the

base environment. In addition, the Government-sponsored efforts

to build a MAPSE (that is, the ALS, AIE, and ALS/N efforts), as

well as several on-going commercial efforts, will result in

environments that could be used as a base environment.

Something such as the NBS (National Bureau of Standards)-

developed tool taxonomy could be used to provide a reasonable,

albeit rough, organization for the pool of tools. The

standards themselves will provide a first approximation to the

certification filter. And an initial selection filter could

be provided by the tool classification characteristics used in

the NBS taxonomy or in the commercially available tool
"catalogues" provided by several companies. Finally, much of

the technology for fitting the pieces together to form a

specific environment exists as a result of projects such as

the Toolpack and Gandalf projects.

The success of this approach is somewhat dependent on

breaking the large tools that we typically think in terms of

today, such as compilers, into tool piece parts. If this is not

done, then the wide variability of requirements for specific

environments will result in few of the tools being selected and

the need to build a large number of new tools.

For many traditional tools, the piece parts into which they

should be broken are fairly obvious just from our general

experiences. For example, breaking a compiler into a lexical

analyzer, a parser, a code generator, and an optimizer is an

obvious division that provides piece parts of general utility.

This general knowledge that we have from working with tradi-

tional tools can be effectively used to break up a large

variety of different types of tools into reusable piece parts.

A-62

while primitive technology for all the parts of such an

approach is available, truly effective use of this

approach will require several advancements. All of these seem,

however, to be dependent on relatively straightforward

developments rather than major conceptual breakthroughs.

6.3.4. Issues in Considering this Approach

Again, the desirability of this approach requires the con-

sideration of several issues.

Time Required for Standards Approval. The time to have a

set of standards approved and accepted has generally proven to

be lengthy. Sometimes it is an easier and shorter process to

provide a de facto standard. The need for explicit or tacit

approval must be addressed when considering this approach.

Need for Extensibility. This approach provides a very high

degree of extensibility at some extra cost, namely the cost

to re-engineer and fit the various tools and tool piece parts

together. The extra effort required to produce each specific

environment must be weighed against the need for the increased

degree of extensibility.

"Proliferation". The appearance of proliferation may be at

odds with policy that dictates agreement on and support of

commonality. The fact that such policy usually lies behind

moves towards standardization is an anomaly of this approach.

The need to educate policy makers so that this approach can be

accepted as consistent may be too great an effort.

6.4 Licensing

The major barriers to effective modification of acquisition

practices are the rights in data clauses in acquisition

regulations. These regulations can be modified to permit

contracting officers to enter into licensing agreements with

A- 63

software vendors. A report proposing reform of Government

rights in data clauses (11) sketches the mechanics of such a

scheme.

1. Under such a license the contractor maintains most

rights to software -- even if that software was devel-

oped in part at Government expense.

2. The license grants the Government the right to use the

software solely for its own purposes.

3. For software developed solely at the contractor's

expense, the developer would receive a negotiated

royalty for use (no royalty would be possible for

software developed at the Government's expense).

4. Rather than disclose proprietary information covered

by a licensing agreement, the Government can direct

the holder of the information and the inquiring party

to enter into a direct licensing agreement under which

the information can be offered with remuneration

protection accorded to the holder of the information.

5. The terms of the license should include the steps

which the contractor can take to protect any

proprietary information and offer the possibility of

seeking damages done under breeches of the license.

These practices can be carried out in the context of

current acquisition policy, provided that the supporting

regulations are modified and that standards are sufficiently

strong to support this interpretation of policy.

6.5 Summary

Since this alternative, revising policy, is administrative,

the time delay in implementing it is only as long as the review

cycle for such changes. In addition -- since this option is

compatible with many of the technical options given elsewhere in

A-64

this report -- the risk is as low as the technical options.

Adoption of this set of recommendations since they are

administrative, does not introduce any technical risk.

The cost to implement this alternative is limited to that

of modifying policy, and the issues of who is the implementor,

owner and maintainer of the environment are the same as for the

commercial alternatives. The chief area in which this

alternative differs from previous ones is in the development of

new acquisition strategies.

7. Industrial Consortium

Another alternative approach to making significant

improvement in the software state-of-practice for DoD mission-

critical systems is to establish (or encourage the establishment

of) a software consortium to build a software engineering

environment. This section defines the concept of a software

consortium and describes how it might operate. It explores the

feasibility of establishing such a consortium and addresses the

issues and the tradeoffs that should be considered.

7.1 Description of Approach

A consortium is defined as some type of arrangement or

joint activity for effecting a special purpose venture

requiring extensive resources to carry out. These extensive

resources, whether financial, personnel or capital, are usually

more extensive than any of the consortium participants desires

to carry or expend alone. in other instances, each consortium

participant brings a particular expertise to the venture and

none of the participants alone possesses all the expertise

required to carry out the mission.

There are various models for the organization and operation

of consortia. Several examples of consortia currently exist in

the engineering/computer science area; this section will

A-65

describe two of them: the Microelectronics and Computer

Technology Corporation (MCC) in Austin, Texas, and the

Semiconductor Research Corporation (SRC) in Research Triangle

Park, North Carolina. These are just two of a wide range of

possibilities for the operation of a consortium. In addition to

the consortium model, numerous other arrangements can be set up,

including R&D partnerships, joint ventures, and joint

Government/industry/university teams.

Government/industry teaming represents a model that both

the European community and the Japanese have taken for their

high technology joint efforts. As an illustration, the ESPRIT

(European Strategic Program for Research and Development in

Information Technology) Project pools the research efforts of a

dozen European electronics firms involved in the development of

chip technology. The participants, including West Germany's

Siemens, France's Honeywell-Bull, Italy's Olivetti and Philips

of the Netherlands, will share in pre-competitive research that

can be exploited for different marketing purposes once products

are developed. The ESPRIT Project will be funded jointly by the

European governments with an equal amount being shared by the

companies.

7.1.1 Microelectronics and Computer Technoloqy Corporation
(MCC)

MCC was incorporated in August 1982 and announced in May

1983 that it would locate in Austin, Texas. MCC is a unique

consortium in that it was set up as a for-profit corporation and

received Justice Department approval as such. It was the first

for-profit company to receive that approval. Eighteen companies

are shareholders (member companies) in MCC: Advanced Micro

Devices, Allied Corporation, BMC Industries, CDC, DEC, Kodak,

Gould, Harris, Honeywell, Lockheed Missile and Space, Martin

Marietta, Mostek, Motorola, National Semiconductor, NCR, RCA,

Rockwell and Sperry.

A-66

MCC was set up to conduct advanced long-range research in

microelectronics and computer sciences. Their research will be

in four major programs:

o Packaging

o Computer-aided design (for VLSI)

o Software technology

o Advanced computer architecture

- Parallel processing

- Advanced data base architecture

- Expert systems

- Human interface

Specifically, the MCC software technology program is a six-year

program whose overall goal is "to increase productivity of the

software development process by one to two orders of magnitude."

The research that will be pursued as part of that program

includes knowledge based software development, natural language

processing and improved validation and verification technology.

The mix of personnel at MCC is approximately 60% direct

hires and 40% on temporary assignment from shareholder

companies. These latter individuals can be assigned for periods

of time ranging from one year to ten years. Most of the

research programs are set up for five to seven years and are

expected to produce research results at that time. Shareholder

companies benefit in two major ways. They can fund one or more

of MCC's research programs. When an innovation emerges, the

companies that funded that research have exclusive access to

that technology for three years. After three years, the

technology is available to the entire industry through licensing

agreements. The fees that result from the licenses are then

split between MCC and the companies so that companies receive a

return on their investment.

A-6 7

MCC has bi-lateral data exchange agreements with the

Federal Government. However, MCC will not perform classified

research nor will it compete for procurements. If a Government

agency is interested in accelerating a particular research

program at MCC, MCC would accept the Government agency as a

shareholder "company". To date, this has not taken place.

7.1.2 Semiconductor Research Corporation (SRC)

SRC was the result of discussions involving major members

of the semiconductor industry--Motorola, National Semiconductor,

Intel and Advanced Micro Devices--and systems houses, including

IBM, Digital, Honeywell and Control Data. In the early 1980s,

semiconductor industry leaders realized that long-term research

on a cooperative basis was becoming imperative. SRC was the

result. It was incorporated on a not-for-profit basis in

February 1982. It currently has 28 members in the

semiconductor, systems, chemicals and equipment industries. SRC

has both research and development programs underway. One of its

targets for the 1990s is a commercial chip with one million

gates, 0.5 nanosecond delay and 50% yield--a supercomputer on a

single chip.

The SRC research is focused in three fields: microstructure

sciences, design sciences and manufacturing sciences.

Approximately 50% of its research funds are allocated to the

microstructure sciences centered at Cornell University. In each

of the three research areas, there are specific target goals to

focus the research.

Although initially established to sponsor research in the

universities, it has recently decided to establish a development

program. In the past, development was a collaborative effort

between semiconductor manufacturers and individual equipment

makers. However, in the last decade, the complexity of

equipment, development costs and selling prices have all

A-68

increased by an order of magnitude. Over the next five years,

the cost of development and production is expected to increase

by a factor of five to ten. In addition, fabrication at the

submicron level is so complex that no single equipment

manufacturer has sufficient expertise to "do it alone".

The SRC development program, as proposed, will be carried

out in an in-house facility with both its own staff and people

on assignment for one to three years from member companies. It

is planned to be a four-year, $150 million effort with

intermediate deliverables.

As an example, the cost of carrying out the cooperative R&D

efforts at SRC is approximately $300 million: $60 million forI research, $120 million for generic development and $120 million
for automation of manufacturing processes. If U.S.

semiconductor sales are about $12 billion per year, the proposed

SRC budget for R&D amounts to 2.5% of sales.

There are three major differences between SRC and MCC. The

SRC is a not-for-profit corporation, it has a more focused

research program and uses grants to external organizations,

primarily academic institutions, for the conduct of the research

(although the development program set up recently will be

performed in-house). The MCC is a for-profit corporation, it

has a broad program of research in microelectronics and computer

science, and performs its research in-house.

7.2 Objections and Responses

The specific target of this alternative would be the

production (or at least the research underlying the production)

of a software development environment that supports the entire

mission-critical system life cycle. The participants would be

primarily from industry (computer manufacturers,

aerospace/defense contractors, systems houses, software houses)

as well as from academia. Such a cooperative venture in pursuit

A-69

of a challenging goal could bring together the variety of

expertise (that currently exists distributed in industry and

academia) needed to build a software development environment.

Interaction would be on-going with the Software Engineering

Institute in order to carry out the technology insertion of the

environment.

In exploring the feasibility of setting up a software

consortium, several issues should be addressed and various

tradeoffs should be considered. These fall into the following

categories:

o organizational and legal

o financial

o technical

" marketing

Critics of the consortium concept often raise several objections

that we will respond to in this section.

7.2.1 Organizational and Legal Issues

The manner in which the consortium is organized is an

important issue. Several alternatives are possible. Member

companies and/or academic institutions can share equally in the

consortium programs or participate only partially in specific

areas of interest (and benefit partially in those areas only).

Participants can provide people on assignments for a specific

length of time (as in the SRC development program) or the

consortium can hire its own staff. A combination of both is

also feasible in which there is a core staff with member

companies also providing people on assignment. These

individuals could then return to their parent company and help

mature and transition this technology being developed in the

consortium to their parent company and get it more widely used.

Individuals from academic institutions could then have

"industrial experience" while participating in the consortium

A-70

and return to the university to familarize students with the

software development environment being produced by the

consortium.

A potential objection to the consortium alternative is that

consortia have typically been staffed by individuals who lack

expertise in actually building and delivering MCCR systems.

Staff ing a consortium with experienced, applications oriented

people may not be feasible for a number of reasons. They

command higher salaries than a consortium may be willing or able

to pay. This is partly because they are in high demand by

industry who uses them to bid and win new contracts. It is also

possible that such people may not want to work in a consortium

environment, being oriented to a business (profit/loss)

environment.

An important legal objection is that of anti-trust

violation. Most of the U.S. consortia are organized as not-for-

profit corporations. MCC was the first to be allowed by the

Justice Department to be set up as a for-profit corporation by

its shareholder companies. Recent efforts have been under way

to remove the barrier of antitrust violation so that consortia

can be set up more easily. In fact, there are currently several

proposed consortia undergoing Justice Department review.

7.2.2. Financial Issues

There are several issues of concern in the financial area

for a software consortium:

o finding a favorable tax climate

o seeking donations of land and/or equipment to get the

consortium going

o handling joint funding.

Most states in the U.S. are actively seeking growth in high

technology areas and are beginning to pass very favorable tax

A-71

legislation to encourage high technology joint ventures and con-

sortia. In some instances, donations of state-owned land are a

definite inducement to locate in a particular location.

Equipment grants are also becoming popular and many of the

computer manufacturers would be eager to donate equipment to a

software consortium to produce a software development

environment for building DoD mission critical systems.

The manner in which joint funding of the consortium is

handled is another issue. If the consortium participants

include major Defense contractors, small businesses, computer

manufacturers, software houses, as well as academic

institutions, how is funding handled? Do they all fund it

equally and get an "equal" share of the benefits? Should there

be government funding involved, and if so, what share? MCC and

SRC have resolved this issue in different ways.

7.2.3 Technical Issues

There are several technical issues that need to be

addressed in a software consortium:

o Handling of proprietary rights and the rights in data
issue

o Competitive advantage issue

o Technical approach to building software development
environment

o Responsibility for the resulting product.

It is feasible to protect proprietary rights and still par-

ticipate in a consortium to build a software development

environment for DoD mission critical systems. It is also

possible that a member company can have greater benefit from

sharing its proprietary idea and making it available to the

Government (on some type of mutually beneficial arrangement) or

other consortium participants than by keeping it proprietary.

A-72

Critics argue against consortia because they feel that such

enterprises interfere with their competitive advantage.

However, a significant amount of R&D can be done in a pre-

competitive posture that would benefit all the participants
before they are even competing with each other. One approach to

this problem is taken by MCC. MCC gives shareholder companies

who participated in the research program exclusive access to an

innovation for three years. Pre-competitive research is the

focus of the ESPRIT project.

The technical approach that would be pursued in building

the software development environment is another major issue.

Should an evolutionary approach be taken or a revolutionary one?

In fact, should several "competing" approaches go through a

thorough design phase and then a choice be made on which one(s)

to implement and experiment with in a testbed environment? The

level of funding for the consortium would certainly have an

impact on these decisions as well as the membership make-up and

expertise of the consortium.

Another objection to consortia is that it is not always

clear who has responsibility for the resulting product. Since

the software development environment is a joint activity and is

aimed at the development of DoD mission critical systems, what

if something goes wrong? Who is responsible for the project and

its results--the consortium itself or the member companies and

universities? Who is responsible for product delivery, as

necessary, to the SEI and DoD? Who is responsible for

marketing, distribution, and maintenance? A partial solution is

that since the rights in data issue is under revision, the

development environment may not necessarily be required as part

of the delivered mission critical system. It could, however, be

available to the member companies (perhaps for further

productization) as well as the SEI.

A-73

7.2.4 Marketing Issues

Another issue to be addressed is: what is the market for

the software development environment that the consortium would
be building? Although the goal is to use the environment to

develop DoD mission critical systems, is the market DoD, Defense

contractors, the SEI? In fact, do they all form the market of

the consortium's environment, and if so, what are their

different expectations and needs? This is an issue that can be

resolved in a variety of ways. The SEI can be the primary

market, or the member companies can be the primary market.
Another alternative is that the consortium can "productize" the

environment and then make it widely available for DoD use. This

issue is also intertwined with several of the organizational and

technical issues discussed in the previous sections.

7.3 Summary

This section of the report has attempted to define a

consortium and give several examples of consortia that exist

today as well as a brief description of their operation.
Various issues and tradeoffs that must be considered in such an

undertaking were briefly addressed. In conclusion, the concept

of a software consortium is an alternative for building a

software development environment for DoD mission-critical

systems and, thereby, significantly improving the current state
of software practice for those systems. It is, of course,

dependent on the resolution of those important issues for the
success of the particular undertaking.

Time: The consortium option provides both mid-term and

long-range solutions depending on the approach chosen to build

the environment. An incremental evolutionary approach would
result in products in the mid-term while a revolutionary

approach would result in products in the long-term.

A-74

Risk: The technical risk in this option can span the

spectrum from low to high. An evolutionary approach that

incrementally builds the environment could control risk easily
and result in a low-risk solution. A more revolutionary

approach, for example, adopting an alternative paradigm

radically different from the current software development
paradigm, could have high technical risk but high payoff by

resulting in an environment for the long-term.

Design Method: The consortium option would develop the

environment using a top-down approach.

Funding Source: The source of funds for the consortium can

be either private or a combination of private and Government.

If the funding includes Government funds, their investment would
probably leverage the R&D investment made by industry

participants in the consortium.

Implementors: The developers and implementors would come
from industry and academia. In the alternative in which there

is some Government funding, Government implementors may be part

of the consortium.

Ownership: The ownership of the environments would reside
in the private sector and therefore be proprietary.

Business Model: The consortium option assumes a standard

model of commercial business practices in which the technology

is licensed to users.

MCCR Acquisition Stragegy: Since the environment ownership

is in the private sector, developers of MCCR applications

desiring to use the environment developed by the consortium

could arrange (e.g. by licensing) for use of that environment.
The Government would probably not GFE the environment since it

is not Government-owned.

A-75

Maintainer: Two approaches to maintaining the environment

are possible: developers or SEI. The maintenance and support

by the developer is the likely choice although it may also be

possible to have the SEI carry out that function.

Management Approach: The management approach is

centralized in the consortium.

A-76

REFERENCES

I

REFERENCES

1. S. Redwine, et.al., "DoD-Related Software Technology
Requirements, Practices, and Prospects for the Future," IDA
Paper P-1788, 1984, in press.

2. "A Software Engineering Environment for the Navy," Report
of the NAVMAT Software Engineering Environment Working
Group, March 31, 1982.

3. "Report of Findings and Recommendations--Software
Engineering Institute Study Panel," (N. Eastman, chairman)
Institute for Defense Analyses, Record Document D-49,
December, 1983.

4. R. J. Hermann, "USDRE Independent Review of DoD
Laboratories," Report Prepared for the Undersecretary of
Defense Research and Engineering, March 1982.

5. "The Navy/SEI Interface," a briefing by NAVMAT/MAT08Y.

6. Naval Air Development Center, CMS-2 FASP Users' Manual,
Revision 6.4, 1 February 1984.

7. "Software Engineering Automation for Tactical Embedded
Computer Systems," NOSC, August, 1983.

8. "Ada Programming Support Environment (APSE) Evaluation and
Validation (E&V) Workshop Report," Institute for Defense
Analyses, 1984, in press.

9. R. A. DeMillo and R. J. Martin, "The Software Test and
Evaluation Project, Phases I and II" (6 volumes), Director
Defense Test and Evaluation, USDRE, August 1983.

10. "Report of the Rights in Data Technical Working Group,"
(RDTWG), Institute for Defense Analyses, Record Document D-
52, 2 Volumes, January 1984.

11. Software Rights in Data Task Force, "Proposed Reform of
Government Rights in Data Clauses," M. Greenberger, et.al.,
May 1984.

12. DoD STARS Program, "Plan of Action and Milestones for
Definition and Preliminary Design of a Joint Services
Software Engineering Environment (JSSEE), January 1984.

R-1

13. S. Redwine, "The Future Government and Industry Software
Tools Marketplace," Proceedings of the 1st Annual
Washington Ada Symposium, sponsored by ACM Washington
Chapter, Ada Technical Committee (DCAdaTec) and The Johns
Hopkins University Applied Physics Laboratory Computer
Society, 1984.

R-2

~i

!

I
DISTRIBUTION LIST FOR PAPER P-1789

CPT David Boslaugh
2221 Jefferson Davis Highway, Rm. #944
Arlington, VA 22202

Paul Clements
Naval Research Laboratory
Code 7595
Computer Science and Systems Branch
Washington, DC 20375

Charles Colello
Plans and Programs Division
Rm 1D679, Per iqon
Washington, LX 20310

LTC Harrington
HO AFLC/MMEC
Wright Patterson AFB, Ohio 45433

Jim Hess
DARCOM

9N23 AMC
5001 Eisenhower Ave.
Alexandria, VA 22333

John Leary
STARS Joint Program Office
400 Army Navy Drive, 9th FlooYr
Arlington, VA 22202

Edward Lieblein
OUSDRE/R&AT (CSS)
400 Army Navy Dr., 9th Floor
Arlington, VA 22202

LTC Vance Mall
OUSDRE/CSS
400 Army Navy Drive, 9th Floor
Arlington, VA 22202

Robert F. Mathis (25 copies)
Director, AJPO
400 Army Navy Drive, 9th Floor
Arlington, VA 22202

Carol Morgan
400 Army Navy Drive, 9th Floor
Arlington, VA 22202

I

LIC Mote
HQ Air Force Systems Ccumand
Office Code ALR
Bldg. 1535 fm. EE205
Andrews AFB, MD 20334

COL Ken Nidiffer
HQ Air Force Systems Command
Office Code ALR
Bldg. 1535 Rm. EE205
Andrews AFB, MD 20334

Jim Riley
HQ AFSC/DLA
Andrews AFB, MD 20334

Dick Stanley
STARS Joint Program Office
400 Army Navy Drive, 9th Floor
Arlington, VA 22202

Hank Stuebing
Code 50C
NAVAIR DEVCEZN
Warminster, PA 18974

David Weiss
Naval Research Lab
Code 7592
Computer Science and Systems Branch
Washington, DC 20375

Other

Dr. Dan Alpert
Director, Center for Advanced Study
University of Illinois
912 W. Illinois Street
Urbana, IL 61801

Betsy Bailey
400 N. Cherry Street
Falls Church, VA 22046

John Bailey
400 N. Cherry Street
Falls Church, VA 22046

I
Barry Boehm
TRW Defense Systems Group
MS R2-1076
One Space Park
Redondo Beach, CA 90278

Bill Carlson
Intermetrics
4733 Bethesda Avenue, Suite 415
Bethesda, MD 20814

Ruth Davis
The Pymatuning Group, Inc.
2000 L St., N.W., Suite 702
Washington, DC 20036

Richard DeMillo
Georgia Institute of Technology
School of Inf. and Computer Science
Atlanta, GA 30332

Larry E. Druffel
Rational Machines
1501 Salado Drive
Mountain View, CA 94043

Mr. Neil Eastman

Manager, Software Engineering and Technology
IBM Federal Systems Division
6600 Rockledge Drive
Bethesda, MD 20817

Frank McGarry

NASA/GSFC
Code 582
Greenbelt, MD 20771

John Manley
Conputing Technology Transition, Inc.
82 Concord Drive
Madison, CT 06443

Ann Marmor-Squires
TRW
Software Development Lab
2751 Prosperity Ave.
Fairfax, VA 22031

Ronnie J. Martin
School of Information & Caputer Science
Georgia Institute of Technology
Atlanta, GA 30332

I

Don Philpot
Software Engineering Technology Corporation
197 Montgamery Rd. MC3
Altamonte Springs, FL 32714

Defense Technical Information Center - (12 copies)
Cameron Station
Alexandria, VA 22314

William Riddle
Software Design and Analysis
1670 Bear Mountain Dr.
Boulder, CO 80303

DoD-IlA Management Office

1801 N. Beauregard St.
Alexandria, VA 22311

IDA

Ms. Louise Becker
Mr. Matthew Berler
Mr. J. Frank Campbell
Dr. Jack Kramer
Ms. Sarah Nash
Dr. Thomas H. Probert
Mr. Samuel T. Redwine, Jr.

Mr. John Salasin
Dr. Marko M. Slusarczuk
Mr. E. Ronald Weiner
Ms. Carol Powell - (2 copies)

'DATE

'ILME

